官术网_书友最值得收藏!

Input layer shape

Since we've already identified our inputs, we know that the input matrix will have a number of rows equal to the number of data elements/observations in our dataset and a number of columns equal to the number of variables/features.  The shape of the input matrix then is (number of observations x  10 features).  Rather than defining the exact number of records in our dataset or minibatch, TensorFlow and Keras allow us to use None as a placeholder when we define the number of elements in a dataset.

If you see a None dimension used in a Keras or TensorFlow model layer shape, it really means any, the dimension could take on any positive integer value.
主站蜘蛛池模板: 红安县| 德令哈市| 肃北| 宁河县| 中阳县| 延吉市| 塘沽区| 来宾市| 射阳县| 武定县| 沅江市| 龙泉市| 新乡市| 洞头县| 额济纳旗| 井陉县| 班戈县| 玉环县| 无为县| 梁河县| 交口县| 信丰县| 息烽县| 海林市| 富顺县| 辽源市| 海南省| 正安县| 南郑县| 赣州市| 县级市| 广元市| 江北区| 娄烦县| 泾阳县| 基隆市| 遵化市| 卓资县| 鹤岗市| 通州市| 沅陵县|