- Deep Learning Quick Reference
- Mike Bernico
- 121字
- 2021-06-24 18:40:10
Input layer shape
Since we've already identified our inputs, we know that the input matrix will have a number of rows equal to the number of data elements/observations in our dataset and a number of columns equal to the number of variables/features. The shape of the input matrix then is (number of observations x 10 features). Rather than defining the exact number of records in our dataset or minibatch, TensorFlow and Keras allow us to use None as a placeholder when we define the number of elements in a dataset.
If you see a None dimension used in a Keras or TensorFlow model layer shape, it really means any, the dimension could take on any positive integer value.
推薦閱讀
- 大數據管理系統
- 面向STEM的mBlock智能機器人創新課程
- Java開發技術全程指南
- 數據運營之路:掘金數據化時代
- Visual C# 2008開發技術詳解
- Android游戲開發案例與關鍵技術
- Storm應用實踐:實時事務處理之策略
- The Python Workshop
- Hands-On Reactive Programming with Reactor
- Azure PowerShell Quick Start Guide
- 基于企業網站的顧客感知服務質量評價理論模型與實證研究
- 傳感器原理與工程應用
- Embedded Linux Development using Yocto Projects(Second Edition)
- 網頁設計與制作
- Arduino創意機器人入門:基于ArduBlock(第2版)