官术网_书友最值得收藏!

The LeNet-5 convolutional neural network

Architecture of LeNet-5, from Gradient-based Learning Applied to Document Recognition by LeCunn et al.(http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf)

LeNet-5 is a seven-level convolutional neural network, published by the team comprising of Yann LeCunn, Yoshua Bengio, Leon Bottou and Patrick Haffner in 1998 to classify digits, which was used by banks to recognize handwritten numbers on checks. The layers are ordered as:

  • Input image | Convolutional Layer 1(ReLU) | Pooling 1 |Convolutional Layer 2(ReLU) |Pooling 2 |Fully Connected (ReLU) 1 | Fully Connected 2 | Output
  • LeNet-5 had remarkable results, but the ability to process higher-resolution images required more convolutional layers, such as in AlexNet, VGG-Net, and Inception models.
主站蜘蛛池模板: 汝南县| 乌兰察布市| 罗江县| 康保县| 拉萨市| 扶沟县| 洪泽县| 红河县| 青岛市| 和政县| 邳州市| 营山县| 山阴县| 安岳县| 嘉兴市| 留坝县| 客服| 峡江县| 炉霍县| 镇原县| 温泉县| 蒙自县| 永寿县| 正宁县| 江北区| 惠东县| 喀喇沁旗| 呼伦贝尔市| 濉溪县| 城口县| 马龙县| 清新县| 湖南省| 灌阳县| 广东省| 濮阳县| 永仁县| 宿迁市| 长白| 白朗县| 汶上县|