We progress with logistic regression with Spark as follows:
importorg.apache.spark.ml.classification.LogisticRegression// Load training datavaltraining=spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")vallr=newLogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)// Fit the modelvallrModel=lr.fit(training)// Print the coefficients and intercept for logistic regressionprintln(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")// We can also use the multinomial family for binary classificationvalmlr=newLogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8).setFamily("multinomial")valmlrModel=mlr.fit(training)// Print the coefficients and intercepts for logistic regression with multinomial familyprintln(s"Multinomial coefficients: ${mlrModel.coefficientMatrix}")println(s"Multinomial intercepts: ${mlrModel.interceptVector}")