官术网_书友最值得收藏!

Logistic regression with Spark

We progress with logistic regression with Spark as follows:

import org.apache.spark.ml.classification.LogisticRegression

// Load training data
val training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

val lr = new LogisticRegression()
  .setMaxIter(10)
  .setRegParam(0.3)
  .setElasticNetParam(0.8)

// Fit the model
val lrModel = lr.fit(training)

// Print the coefficients and intercept for logistic regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")

// We can also use the multinomial family for binary classification
val mlr = new LogisticRegression()
  .setMaxIter(10)
  .setRegParam(0.3)
  .setElasticNetParam(0.8)
  .setFamily("multinomial")

val mlrModel = mlr.fit(training)

// Print the coefficients and intercepts for logistic regression with multinomial family
println(s"Multinomial coefficients: ${mlrModel.coefficientMatrix}")
println(s"Multinomial intercepts: ${mlrModel.interceptVector}")
主站蜘蛛池模板: 宣恩县| 湘潭县| 祁东县| 开远市| 如东县| 板桥市| 故城县| 丘北县| 延安市| 红原县| 阿合奇县| 黎城县| 鄂托克前旗| 中宁县| 九台市| 肥东县| 兴化市| 城固县| 通榆县| 玉环县| 崇仁县| 军事| 绥宁县| 凤山县| 韶山市| 吉林市| 临城县| 上虞市| 辉县市| 高州市| 通江县| 台中县| 阿坝| 蒲城县| 五常市| 资阳市| 威海市| 肥西县| 伽师县| 运城市| 遂川县|