官术网_书友最值得收藏!

7. Amicable numbers

Two numbers are said to be amicable if the sum of the proper pisors of one number is equal to that of the other number. The proper pisors of a number are the positive prime factors of the number other than the number itself. Amicable numbers should not be confused with friendly numbers. For instance, the number 220 has the proper pisors 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110, whose sum is 284. The proper pisors of 284 are 1, 2, 4, 71, and 142; their sum is 220. Therefore, the numbers 220 and 284 are said to be amicable.

The solution to this problem is to iterate through all the numbers up to the given limit. For each number, compute the sum of its proper pisors. Let’s call this sum1. Repeat the process and compute the sum of the proper pisors of sum1. If the result is equal to the original number, then the number and sum1 are amicable numbers:

void print_amicables(int const limit)
{
for (int number = 4; number < limit; ++number)
{
auto sum1 = sum_proper_pisors(number);
if (sum1 < limit)
{
auto sum2 = sum_proper_pisors(sum1);
if (sum2 == number && number != sum1)
{
std::cout << number << "," << sum1 << std::endl;
}
}
}
}

In the above sample, sum_proper_pisors() is the function seen in the solution to the abundant numbers problem.

The above function prints pairs of numbers twice, such as 220,284 and 284,220. Modify this implementation to only print each pair a single time.

主站蜘蛛池模板: 库伦旗| 舟曲县| 溧阳市| 辽阳市| 宁波市| 海原县| 石渠县| 勃利县| 炎陵县| 天祝| 江陵县| 平湖市| 霍邱县| 江津市| 文化| 治多县| 当涂县| 盘锦市| 三河市| 新巴尔虎左旗| 博兴县| 五河县| 余江县| 大冶市| 瓮安县| 五河县| 铁力市| 田东县| 大同县| 定南县| 四川省| 错那县| 阿巴嘎旗| 互助| 沈丘县| 泸西县| 谢通门县| 内丘县| 广州市| 江华| 高邑县|