官术网_书友最值得收藏!

ElasticNet

In many real cases, it's useful to apply both Ridge and Lasso regularization in order to force weight shrinkage and a global sparsity. It is possible by employing the ElasticNet regularization, defined as:

The strength of each regularization is controlled by the parameters λ1 and λ2. ElasticNet can yield excellent results whenever it's necessary to mitigate overfitting effects while encouraging sparsity. We are going to apply all the regularization techniques when discussing some deep learning architectures.

主站蜘蛛池模板: 吉水县| 霍邱县| 望江县| 江阴市| 光泽县| 太康县| 灵山县| 阿瓦提县| 阜南县| 南开区| 渝中区| 桑植县| 兰溪市| 镇江市| 宁河县| 铜川市| 津市市| 襄汾县| 乌苏市| 垦利县| 喀喇| 邵阳县| 东乡| 二连浩特市| 旅游| 军事| 正阳县| 阿图什市| 清水河县| 阳谷县| 望城县| 陵水| 旅游| 灵璧县| 宜都市| 普格县| 通渭县| 赤城县| 虎林市| 太和县| 汝阳县|