官术网_书友最值得收藏!

Merging different datasets

First, let's generate some hypothetical datasets. Then we will try to merge them according to certain rules. The easiest way is to use Monte Carlo simulation to generate those datasets:

> set.seed(123) 
> nStocks<-4 
> nPeriods<-24 
> x<-runif(nStocks*nPeriods,min=-0.1,max=0.20) 
> a<-matrix(x,nPeriods,nStocks) 
> d1<-as.Date("2000-01-01") 
> d2<-as.Date("2001-12-01") 
> dd<-seq(d1,d2,"months") 
> stocks<-data.frame(dd,a) 
> colnames(stocks)<-c("DATE",paste('stock',1:nStocks,sep=''))  

In the code, the first line sets up a random seed which will guarantee that any user will get the same random numbers if he/she uses the same random seed. The runif() function is used to get random numbers from a uniform distribution. In a sense, the preceding code would generate 2-year returns for five stocks. The dim() and head() function can be used to see the dimensions of the dataset and its first couple of lines, as shown here:

> dim(stocks) 
[1] 24  5 
> head(stocks) 
        DATE      stock1      stock2      stock3      stock4 
1 2000-01-01 -0.01372674  0.09671174 -0.02020821  0.11305472 
2 2000-02-01  0.13649154  0.11255914  0.15734831 -0.09981257 
3 2000-03-01  0.02269308  0.06321981 -0.08625065  0.04259497 
4 2000-04-01  0.16490522  0.07824261  0.03266002 -0.03396433 
5 2000-05-01  0.18214019 -0.01325208  0.13967745  0.01394496 
6 2000-06-01 -0.08633305 -0.05586591 -0.06343022  0.08383130  

Similarly, we could get the market returns, shown in the code here:

> d3<-as.Date("1999-01-01") 
> d4<-as.Date("2010-12-01") 
> dd2<-seq(d3,d4,"months") 
> y<-runif(length(dd2),min=-0.05,max=0.1) 
> market<-data.frame(dd2,y) 
> colnames(market)<-c("DATE","MKT") 

To make the merge more interesting, we deliberately make the market returns longer, shown here along with its dimensions and the first several lines:

> dim(market) 
[1] 144   2 
> head(market,2) 
        DATE          MKT 
1 1999-01-01  0.047184022 
2 1999-02-01 -0.002026907 

To merge them, we have the following code:

> final<-merge(stocks,market) 
> dim(final) 
[1] 24  6 
> head(final,2) 
        DATE      stock1     stock2      stock3      stock4        MKT 
1 2000-01-01 -0.01372674 0.09671174 -0.02020821  0.11305472 0.05094986 
2 2000-02-01  0.13649154 0.11255914  0.15734831 -0.09981257 0.06056166 

To find out more about the R merge() function, just type help(merge) and we can then specify inner merge, left-merge, right-merge, and out merge. The default setting in the previous case is called inner merge, as in picking up observations that only exist in both datasets.

The following Python program shows this concept clearly:

import pandas as pd 
import scipy as sp 
x= pd.DataFrame({'YEAR': [2010,2011, 2012, 2013], 
                 'FirmA': [0.2, -0.3, 0.13, -0.2], 
                 'FirmB': [0.1, 0, 0.05, 0.23]}) 
y = pd.DataFrame({'YEAR': [2011,2013,2014, 2015], 
                 'FirmC': [0.12, 0.23, 0.11, -0.1], 
                 'SP500': [0.1,0.17, -0.05, 0.13]}) 
 
print("n  inner  merge ") 
print(pd.merge(x,y, on='YEAR')) 
print(" n  outer merge  ") 
print(pd.merge(x,y, on='YEAR',how='outer')) 
print("n  left  merge  ") 
print(pd.merge(x,y, on='YEAR',how='left')) 
print("n  right  merge ") 
print(pd.merge(x,y, on='YEAR',how='right')) 

The related output is shown here:

主站蜘蛛池模板: 金门县| 沙洋县| 安陆市| 石渠县| 城固县| 遂溪县| 无为县| 黎平县| 安吉县| 竹北市| 聊城市| 阜康市| 亳州市| 河池市| 惠州市| 博客| 塔河县| 秦皇岛市| 老河口市| 荣昌县| 本溪| 安达市| 溆浦县| 禄劝| 平泉县| 恩施市| 德阳市| 万宁市| 吴堡县| 大庆市| 靖江市| 永春县| 永嘉县| 宁化县| 太湖县| 姜堰市| 乌苏市| 隆林| 巴塘县| 白河县| 天祝|