官术网_书友最值得收藏!

Dealing with missing data

First, let's look at the missing codes for different languages:

Table 3.7: Missing codes for R, Python, Julia, and Octave

For R, the missing code is NA. Here are several functions we could use to remove those missing observations, shown in an example:

> head(na_example,20) 
[1]  2  1  3  2  1  3  1  4  3  2  2 NA  2  2  1  4 NA  1  1  2 
> length(na_example) 
[1] 1000 
> x<-na.exclude(na_example) 
> length(x) 
[1] 855 
> head(x,20) 
[1] 2 1 3 2 1 3 1 4 3 2 2 2 2 1 4 1 1 2 1 2 

In the previous example, we removed 145 missing values by using the R function called na.exclude(). We could also use the apropos() function to find more functions dealing with missing code in R, as shown here:

 > apropos("^na.") 
 [1] "na.action"              "na.contiguous"          
 [3] "na.exclude"             "na.fail"                
 [5] "na.omit"                "na.pass"                
 [7] "na_example"             "names"                  
 [9] "names.POSIXlt"          "names<-"                
[11] "names<-.POSIXlt"        "namespaceExport"        
[13] "namespaceImport"        "namespaceImportClasses" 
[15] "namespaceImportFrom"    "namespaceImportMethods" 
[17] "napredict"              "naprint"                
[19] "naresid"                "nargs" 
 

For Python, we have the following example, First, let’s generate a dataset called z.csv, see the R code given next. For the program, we generate 100 zeros as our missing values:

set.seed(123)
n=500
x<-rnorm(n)
x2<-x
m=100
y<-as.integer(runif(m)*n)
x[y]<-0
z<-matrix(x,n/5,5)
outFile<-"c:/temp/z.csv"
write.table(z,file=outFile,quote=F,row.names=F,col.names=F,sep=',')

The following Python program checks missing values for 5 columns, replace them with NaN or with the averages of each columns:

import scipy as sp
import pandas as pd
path="https://canisius.edu/~yany/data/"
dataSet="z.csv"
infile=path+dataset
#infile=”c:/temp/z.csv”
x=pd.read_csv(infile,header=None)
print(x.head())
print((x[[1,1,2,3,4,5]] ==0).sum())

The related output is shown here:

At this stage, we just know that for the first five columns, zero represents a missing value. The code of print((x[[1,2,3,4,5]] == 0).sum()) shows the number of zeros for five columns. For instance, there are five zeros for the first column. We could use scipy.NaN to replace those zeros, as shown here:

x2=x
x2[[1,2,3,4,5]] = x2[[1,2,3,4,5]].replace(0, sp.NaN)
print(x2.head())

The output with zeros is replaced with sp.NaN, as shown here:

If we plan to use the mean to replace those NaNs, we have the following code:

x3=x2
x3.fillna(x3.mean(), inplace=True)
print(x3.head())

The output is shown here:

主站蜘蛛池模板: 黄龙县| 晴隆县| 中西区| 漯河市| 天全县| 凯里市| 商水县| 万源市| 广河县| 双城市| 磴口县| 休宁县| 四平市| 常山县| 沭阳县| 黑河市| 马公市| 固原市| 盐津县| 饶平县| 南靖县| 秀山| 聂荣县| 全南县| 阿图什市| 阜平县| 彭水| 奉新县| 张家界市| 永丰县| 太白县| 天长市| 剑阁县| 红桥区| 巨野县| 尼勒克县| 西安市| 乐东| 准格尔旗| 兰西县| 清原|