- Hands-On Data Science with Anaconda
- Dr. Yuxing Yan James Yan
- 355字
- 2021-06-25 21:08:49
Dealing with missing data
First, let's look at the missing codes for different languages:

Table 3.7: Missing codes for R, Python, Julia, and Octave
For R, the missing code is NA. Here are several functions we could use to remove those missing observations, shown in an example:
> head(na_example,20) [1] 2 1 3 2 1 3 1 4 3 2 2 NA 2 2 1 4 NA 1 1 2 > length(na_example) [1] 1000 > x<-na.exclude(na_example) > length(x) [1] 855 > head(x,20) [1] 2 1 3 2 1 3 1 4 3 2 2 2 2 1 4 1 1 2 1 2
In the previous example, we removed 145 missing values by using the R function called na.exclude(). We could also use the apropos() function to find more functions dealing with missing code in R, as shown here:
> apropos("^na.") [1] "na.action" "na.contiguous" [3] "na.exclude" "na.fail" [5] "na.omit" "na.pass" [7] "na_example" "names" [9] "names.POSIXlt" "names<-" [11] "names<-.POSIXlt" "namespaceExport" [13] "namespaceImport" "namespaceImportClasses" [15] "namespaceImportFrom" "namespaceImportMethods" [17] "napredict" "naprint" [19] "naresid" "nargs"
For Python, we have the following example, First, let’s generate a dataset called z.csv, see the R code given next. For the program, we generate 100 zeros as our missing values:
set.seed(123)
n=500
x<-rnorm(n)
x2<-x
m=100
y<-as.integer(runif(m)*n)
x[y]<-0
z<-matrix(x,n/5,5)
outFile<-"c:/temp/z.csv"
write.table(z,file=outFile,quote=F,row.names=F,col.names=F,sep=',')
The following Python program checks missing values for 5 columns, replace them with NaN or with the averages of each columns:
import scipy as sp
import pandas as pd
path="https://canisius.edu/~yany/data/"
dataSet="z.csv"
infile=path+dataset
#infile=”c:/temp/z.csv”
x=pd.read_csv(infile,header=None)
print(x.head())
print((x[[1,1,2,3,4,5]] ==0).sum())
The related output is shown here:

At this stage, we just know that for the first five columns, zero represents a missing value. The code of print((x[[1,2,3,4,5]] == 0).sum()) shows the number of zeros for five columns. For instance, there are five zeros for the first column. We could use scipy.NaN to replace those zeros, as shown here:
x2=x
x2[[1,2,3,4,5]] = x2[[1,2,3,4,5]].replace(0, sp.NaN)
print(x2.head())
The output with zeros is replaced with sp.NaN, as shown here:

If we plan to use the mean to replace those NaNs, we have the following code:
x3=x2
x3.fillna(x3.mean(), inplace=True)
print(x3.head())
The output is shown here:

- Ansible Configuration Management
- Mastering Matplotlib 2.x
- Python Algorithmic Trading Cookbook
- 最后一個人類
- Hands-On Linux for Architects
- Windows環境下32位匯編語言程序設計
- 3D Printing for Architects with MakerBot
- 統計學習理論與方法:R語言版
- 工業機器人操作與編程
- 傳感器與物聯網技術
- 人工智能:語言智能處理
- Flink原理與實踐
- PostgreSQL High Performance Cookbook
- Mastering Machine Learning with R
- Internet of Things with Raspberry Pi 3