官术网_书友最值得收藏!

What this book covers

Chapter 1, Introduction to Machine Learning in Pentesting, introduces reader to the fundamental concepts of the different machine learning models and algorithms, in addition to learning how to evaluate them. It then shows us how to prepare a machine learning development environment using many data science Python libraries.

Chapter 2, Phishing Domain Detection, guides us on how to build machine learning models to detect phishing emails and spam attempts using different algorithms and natural language processing (NLP).

Chapter 3, Malware Detection with API Calls and PE Headers, explains the different approaches to analyzing malware and malicious software, and later introduces us to some different techniques for building a machine learning-based malware detector.

Chapter 4, Malware Detection with Deep Learning, extends what we learned in the previous chapter to explore how to build artificial neural networks and deep learning to detect malware.

Chapter 5, Botnet Detection with Machine Learning, demonstrates how to build a botnet detector using the previously discussed techniques and publicly available botnet traffic datasets.

Chapter 6, Machine Learning in Anomaly Detection Systems, introduces us to the most important terminologies in anomaly detection and guides us to build machine learning  anomaly detection systems.

Chapter 7, Detecting Advanced Persistent Threats, shows us how to build a fully working real-world threat hunting platform using the ELK stack, which is already loaded by machine learning capabilities.

Chapter 8, Evading Intrusion Detection Systems with Adversarial Machine Learning, demonstrates how to bypass machine learning systems using adversarial learning and studies some real-world cases, including bypassing next-generation intrusion detection systems.

Chapter 9, Bypass Machine Learning Malware Detectors, teaches us how to bypass machine learning-based malware detectors with adversarial learning and generative adversarial networks.

Chapter 10Best Practices for Machine Learning and Feature Engineering, explores  different feature engineering techniques, in addition to introducing readers to machine learning best practices to build reliable systems.

主站蜘蛛池模板: 长垣县| 孝义市| 禄劝| 洛宁县| 桐城市| 濉溪县| 长治市| 麻江县| 大渡口区| 峨眉山市| 乐至县| 麻栗坡县| 庆城县| 焦作市| 榕江县| 寿阳县| 贵南县| 绥宁县| 藁城市| 双桥区| 西平县| 焦作市| 綦江县| 渝北区| 五家渠市| 海阳市| 夹江县| 仁布县| 朝阳区| 沧州市| 平定县| 三都| 民县| 小金县| 达拉特旗| 渑池县| 巴南区| 曲阜市| 玉龙| 彰化县| 凤冈县|