- Hands-On Ensemble Learning with R
- Prabhanjan Narayanachar Tattar
- 124字
- 2021-07-23 19:10:53
Support vector machines
Support vector machines, abbreviated popularly as SVM, are an important class of machine learning techniques. Theoretically, SVM can take an infinite number of features/covariates and build the appropriate classification or regression SVMs.
SVM for hypothyroid classification
The svm
function from the e1071
package will be useful for building an SVM
classifier on the Hypothyroid dataset. Following the usual practice, we have the following output in the R session:
> SVM_fit <- svm(HT2_Formula,data=HT2_Train) > SVM_predict <- predict(SVM_fit,newdata=HT2_TestX,type="class") > SVM_Accuracy <- sum(SVM_predict==HT2_TestY)/nte > SVM_Accuracy [1] 0.9842767296
The SVM technique gives us an accuracy of 98.43%, which is the second best of the models set up thus far.
In the next section, we will run each of the five classification models for the Waveform, German Credit, Iris, and Pima Indians Diabetes problem datasets.
推薦閱讀
- 電氣自動化專業英語(第3版)
- ETL with Azure Cookbook
- 7天精通Dreamweaver CS5網頁設計與制作
- 并行數據挖掘及性能優化:關聯規則與數據相關性分析
- VMware Performance and Capacity Management(Second Edition)
- STM32G4入門與電機控制實戰:基于X-CUBE-MCSDK的無刷直流電機與永磁同步電機控制實現
- RPA(機器人流程自動化)快速入門:基于Blue Prism
- 工業機器人維護與保養
- MCGS嵌入版組態軟件應用教程
- Word 2007,Excel 2007辦公應用融會貫通
- 網絡服務搭建、配置與管理大全(Linux版)
- Mastering GitLab 12
- 基于Proteus的單片機應用技術
- Hands-On SAS for Data Analysis
- 智慧未來