官术网_书友最值得收藏!

Support vector machines

Support vector machines, abbreviated popularly as SVM, are an important class of machine learning techniques. Theoretically, SVM can take an infinite number of features/covariates and build the appropriate classification or regression SVMs.

SVM for hypothyroid classification

The svm function from the e1071 package will be useful for building an SVM classifier on the Hypothyroid dataset. Following the usual practice, we have the following output in the R session:

> SVM_fit <- svm(HT2_Formula,data=HT2_Train)
> SVM_predict <- predict(SVM_fit,newdata=HT2_TestX,type="class")
> SVM_Accuracy <- sum(SVM_predict==HT2_TestY)/nte
> SVM_Accuracy
[1] 0.9842767296

The SVM technique gives us an accuracy of 98.43%, which is the second best of the models set up thus far.

In the next section, we will run each of the five classification models for the Waveform, German Credit, Iris, and Pima Indians Diabetes problem datasets.

主站蜘蛛池模板: 德州市| 集安市| 平顶山市| 永昌县| 淮南市| 景宁| 四平市| 格尔木市| 麦盖提县| 泽库县| 潮州市| 勐海县| 揭阳市| 六安市| 靖江市| 奉化市| 新昌县| 桃江县| 乌拉特中旗| 肥乡县| 十堰市| 宁城县| 宁河县| 托里县| 萨迦县| 银川市| 岑巩县| 桐乡市| 吴江市| 广西| 鹰潭市| 余姚市| 阿合奇县| 蒙阴县| 英德市| 龙陵县| 阿巴嘎旗| 营山县| 信阳市| 云南省| 宜良县|