- R Deep Learning Essentials
- Mark Hodnett Joshua F. Wiley
- 115字
- 2021-08-13 15:34:32
The initializer parameter
When we created the initial values for our weights and biases (that is, model parameters), we used random numbers, but limited them to the values of -0.005 to +0.005. If you go back and review some of the graphs of the cost functions, you see that it took 2,000 epochs before the cost function began to decline. This is because the initial values were not in the right range and it took 2,000 epochs to get to the correct magnitude. Fortunately, we do not have to worry about how to set these parameters in the mxnet library because this parameter controls how the weights and biases are initialized before training.
推薦閱讀
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- Mastering Delphi Programming:A Complete Reference Guide
- 現代辦公設備使用與維護
- 深入淺出SSD:固態存儲核心技術、原理與實戰(第2版)
- 從零開始學51單片機C語言
- The Deep Learning with Keras Workshop
- 微軟互聯網信息服務(IIS)最佳實踐 (微軟技術開發者叢書)
- Building 3D Models with modo 701
- Creating Flat Design Websites
- Intel Edison智能硬件開發指南:基于Yocto Project
- “硬”核:硬件產品成功密碼
- 圖解計算機組裝與維護
- 新編電腦組裝與硬件維修從入門到精通
- 微控制器的應用
- 微服務架構基礎(Spring Boot+Spring Cloud+Docker)