- Mastering Predictive Analytics with scikit:learn and TensorFlow
- Alan Fontaine
- 131字
- 2021-07-23 16:42:27
Training different regression models
The following screenshot shows a dataframe where we are going to save performance. We are going to run four models, namely logistic regression, bagging, random forest, and boosting:
We are going to use the following evaluation metrics in this case:
- accuracy: This metric measures how often the model predicts defaulters and non-defaulters correctly
- precision: This metric will be when the model predicts the default and how often the model is correct
- recall: This metric will be the proportion of actual defaulters that the model will correctly predict
The most important of these is the recall metric. The reason behind this is that we want to maximize the proportion of actual defaulters that the model identifies, and so the model with the best recall is selected.
推薦閱讀
- Splunk 7 Essentials(Third Edition)
- 自動控制工程設計入門
- 一本書玩轉(zhuǎn)數(shù)據(jù)分析(雙色圖解版)
- 數(shù)據(jù)產(chǎn)品經(jīng)理:解決方案與案例分析
- Visual C# 2008開發(fā)技術(shù)詳解
- 工業(yè)機器人工程應用虛擬仿真教程:MotoSim EG-VRC
- Mastering Elastic Stack
- 樂高創(chuàng)意機器人教程(中級 下冊 10~16歲) (青少年iCAN+創(chuàng)新創(chuàng)意實踐指導叢書)
- 數(shù)據(jù)挖掘方法及天體光譜挖掘技術(shù)
- 觸控顯示技術(shù)
- 貫通Java Web開發(fā)三劍客
- 電子設備及系統(tǒng)人機工程設計(第2版)
- 工業(yè)機器人集成應用
- 機器人制作入門(第4版)
- 計算機硬件技術(shù)基礎學習指導與練習