- Hands-On Artificial Intelligence for Beginners
- Patrick D. Smith
- 76字
- 2021-06-10 19:33:46
Chain rule for joint probability
Joint probability is important in the AI space; it's what underlies the mechanics of generative models, which are able to replicate voice, pictures, and other unstructured information. These models learn the joint probability distribution of a phenomenon. They generate all possible values for a given object or event. A chain rule is a technique by which to evaluate the join probability of two variables. Formally, it is written as follows:

推薦閱讀
- 機(jī)密計(jì)算:原理與技術(shù)(網(wǎng)絡(luò)空間安全技術(shù)叢書)
- 機(jī)器學(xué)習(xí)及應(yīng)用(在線實(shí)驗(yàn)+在線自測)
- Excel 2007函數(shù)與公式自學(xué)寶典
- 3D Printing with RepRap Cookbook
- 數(shù)控銑削(加工中心)編程與加工
- 城市道路交通主動(dòng)控制技術(shù)
- 21天學(xué)通C#
- 基于多目標(biāo)決策的數(shù)據(jù)挖掘方法評(píng)估與應(yīng)用
- ESP8266 Home Automation Projects
- Ruby on Rails敏捷開發(fā)最佳實(shí)踐
- Blender 3D Printing by Example
- MCGS嵌入版組態(tài)軟件應(yīng)用教程
- 深度學(xué)習(xí)與目標(biāo)檢測
- 大數(shù)據(jù):引爆新的價(jià)值點(diǎn)
- 伺服與運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)