官术网_书友最值得收藏!

Example 2 – inherently sequential tasks

Let us consider a quick example:

Computing f1000(3), with f(x) = x2 - x + 1, and fn + 1(x) = f(fn(x)).

With complicated functions like f (where it is relatively difficult to find a general form of fn(x)), the only obviously reasonable way to compute f1000(3) or similar values is to iteratively compute f2(3) = f( f(3)), f3(3) = f( f2(3)), ... , f999(3) = f( f998(3)), and, finally, f1000(3) = f( f999(3)).

Since it will take significant time to actually compute f1000(3), even when using a computer, we will only consider f20(3) in our code (my laptop actually started heating up after f25(3)):

# Chapter01/example2.py

def f(x):
return x * x - x + 1

# sequential
def f(x):
return x * x - x + 1

start = timer()
result = 3
for i in range(20):
result = f(result)

print('Result is very large. Only printing the last 5 digits:', result % 100000)
print('Sequential took: %.2f seconds.' % (timer() - start))

Run it (or use python example2.py); the following code shows the output I received:

> python example2.py
Result is very large. Only printing the last 5 digits: 35443
Sequential took: 0.10 seconds.

Now, if we were to attempt to apply concurrency to this script, the only possible way would be through a for loop. One solution might be as follows:

# Chapter01/example2.py

# concurrent
def concurrent_f(x):
global result
result = f(result)

result = 3

with concurrent.futures.ThreadPoolExecutor(max_workers=20) as exector:
futures = [exector.submit(concurrent_f, i) for i in range(20)]

_ = concurrent.futures.as_completed(futures)

print('Result is very large. Only printing the last 5 digits:', result % 100000)
print('Concurrent took: %.2f seconds.' % (timer() - start))

The output I received is shown as follows:

> python example2.py
Result is very large. Only printing the last 5 digits: 35443
Concurrent took: 0.19 seconds.

Even though both methods produced the same result, the concurrent method took almost twice as long as the sequential method. This is due to the fact that every time a new thread (from ThreadPoolExecutor) was spawned, the function conconcurrent_f(), inside that thread, needed to wait for the variable result to be processed by the previous thread completely, and the program as a whole was thus executed in a sequential manner, nonetheless.

So, while there was no actual concurrency involved in the second method, the overhead cost of spawning new threads contributed to the significantly worse execution time. This is one example of inherently sequential tasks, where concurrency or parallelism should not be applied to attempt an improvement in execution time.

主站蜘蛛池模板: 栖霞市| 古交市| 镇赉县| 南丰县| 郎溪县| 缙云县| 曲松县| 昭通市| 金堂县| 西青区| 手游| 通辽市| 渝中区| 名山县| 新化县| 尉犁县| 自贡市| 沈丘县| 大安市| 万全县| 蒲江县| 淮滨县| 万载县| 家居| 平远县| 资源县| 沁水县| 蒙自县| 新沂市| 宁安市| 苏尼特右旗| 右玉县| 伊宁县| 甘肃省| 西藏| 巫溪县| 嘉鱼县| 连云港市| 瑞安市| 中方县| 肇庆市|