- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 89字
- 2021-06-10 19:30:02
Mean squared error
Mean squared error (MSE) is an average of the squared difference between the predicted and true values, as follows:
The measure is very sensitive to the outliers, for example, 99 exact predictions and 1 prediction off by 10 is scored the same as all predictions wrong by 1. Moreover, the measure is sensitive to the mean. Therefore, a relative squared error that compares the MSE of our predictor to the MSE of the mean predictor (which always predicts the mean value) is often used instead.
推薦閱讀
- 32位嵌入式系統(tǒng)與SoC設(shè)計(jì)導(dǎo)論
- 中文版Photoshop CS5數(shù)碼照片處理完全自學(xué)一本通
- 大數(shù)據(jù)時(shí)代的數(shù)據(jù)挖掘
- 工業(yè)機(jī)器人現(xiàn)場(chǎng)編程(FANUC)
- Windows 7寶典
- Implementing Oracle API Platform Cloud Service
- 云原生架構(gòu)進(jìn)階實(shí)戰(zhàn)
- 從零開(kāi)始學(xué)C++
- 走近大數(shù)據(jù)
- 網(wǎng)絡(luò)管理工具實(shí)用詳解
- 深度學(xué)習(xí)與目標(biāo)檢測(cè)
- 實(shí)用網(wǎng)絡(luò)流量分析技術(shù)
- Bayesian Analysis with Python
- 所羅門的密碼
- MATLAB-Simulink系統(tǒng)仿真超級(jí)學(xué)習(xí)手冊(cè)