- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 86字
- 2021-06-10 19:30:00
Kernel methods
Any linear model can be turned into a non-linear model by applying the kernel trick to the model—replacing its features (predictors) by a kernel function. In other words, the kernel implicitly transforms our dataset into higher dimensions. The kernel trick leverages the fact that it is often easier to separate the instances in more dimensions. Algorithms capable of operating with kernels include the kernel perceptron, SVMs, Gaussian processes, PCA, canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters, and many others.
推薦閱讀
- 32位嵌入式系統(tǒng)與SoC設(shè)計(jì)導(dǎo)論
- 走入IBM小型機(jī)世界
- Java開發(fā)技術(shù)全程指南
- Windows XP中文版應(yīng)用基礎(chǔ)
- Spark大數(shù)據(jù)技術(shù)與應(yīng)用
- Cloudera Administration Handbook
- Implementing Splunk 7(Third Edition)
- Learning C for Arduino
- 計(jì)算機(jī)組網(wǎng)技術(shù)
- Hands-On Data Warehousing with Azure Data Factory
- JRuby語言實(shí)戰(zhàn)技術(shù)
- ADuC系列ARM器件應(yīng)用技術(shù)
- EJB JPA數(shù)據(jù)庫持久層開發(fā)實(shí)踐詳解
- PowerPoint 2010幻燈片制作高手速成
- 開放自動化系統(tǒng)應(yīng)用與實(shí)戰(zhàn):基于標(biāo)準(zhǔn)建模語言IEC 61499