- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 86字
- 2021-06-10 19:30:00
Kernel methods
Any linear model can be turned into a non-linear model by applying the kernel trick to the model—replacing its features (predictors) by a kernel function. In other words, the kernel implicitly transforms our dataset into higher dimensions. The kernel trick leverages the fact that it is often easier to separate the instances in more dimensions. Algorithms capable of operating with kernels include the kernel perceptron, SVMs, Gaussian processes, PCA, canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters, and many others.
推薦閱讀
- Hands-On Deep Learning with Apache Spark
- 大學(xué)計(jì)算機(jī)基礎(chǔ):基礎(chǔ)理論篇
- Hands-On Internet of Things with MQTT
- 大數(shù)據(jù)技術(shù)基礎(chǔ)
- 數(shù)據(jù)挖掘?qū)嵱冒咐治?/a>
- 計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)基礎(chǔ)
- 統(tǒng)計(jì)學(xué)習(xí)理論與方法:R語言版
- 影視后期編輯與合成
- 運(yùn)動(dòng)控制系統(tǒng)
- 基于企業(yè)網(wǎng)站的顧客感知服務(wù)質(zhì)量評價(jià)理論模型與實(shí)證研究
- 人工智能:語言智能處理
- 基于RPA技術(shù)財(cái)務(wù)機(jī)器人的應(yīng)用與研究
- 運(yùn)動(dòng)控制系統(tǒng)(第2版)
- 大數(shù)據(jù)素質(zhì)讀本
- 計(jì)算機(jī)辦公應(yīng)用培訓(xùn)教程