官术网_书友最值得收藏!

Decision tree learning

Decision tree learning builds a classification tree, where each node corresponds to one of the attributes; edges correspond to a possible value (or intervals) of the attribute from which the node originates; and each leaf corresponds to a class label. A decision tree can be used to visually and explicitly represent the prediction model, which makes it a very transparent (white box) classifier. Notable algorithms are ID3 and C4.5, although many alternative implementations and improvements exist (for example, J48 in Weka).

主站蜘蛛池模板: 桓仁| 万安县| 涿鹿县| 玉田县| 烟台市| 依安县| 凌源市| 高陵县| 隆安县| 中山市| 临海市| 新竹县| 星座| 寻甸| 凤凰县| 尼玛县| 修武县| 满城县| 邵阳县| 定南县| 建始县| 抚宁县| 体育| 德江县| 建平县| 博兴县| 英山县| 静宁县| 汪清县| 绥滨县| 汽车| 临海市| 龙门县| 南川市| 桐柏县| 益阳市| 根河市| 嘉禾县| 天水市| 舞阳县| 繁昌县|