官术网_书友最值得收藏!

  • Machine Learning in Java
  • AshishSingh Bhatia Bostjan Kaluza
  • 86字
  • 2021-06-10 19:29:59

Decision tree learning

Decision tree learning builds a classification tree, where each node corresponds to one of the attributes; edges correspond to a possible value (or intervals) of the attribute from which the node originates; and each leaf corresponds to a class label. A decision tree can be used to visually and explicitly represent the prediction model, which makes it a very transparent (white box) classifier. Notable algorithms are ID3 and C4.5, although many alternative implementations and improvements exist (for example, J48 in Weka).

主站蜘蛛池模板: 华容县| 青神县| 金华市| 孟津县| 樟树市| 大宁县| 嘉黎县| 饶平县| 土默特右旗| 宜丰县| 温宿县| 华蓥市| 宿州市| 榕江县| 桐柏县| 安远县| 贞丰县| 青浦区| 都匀市| 馆陶县| 太康县| 西盟| 开封县| 宽城| 孙吴县| 古丈县| 秦皇岛市| 崇仁县| 永兴县| 昭平县| 武定县| 宝鸡市| 五大连池市| 开远市| 怀柔区| 抚松县| 陈巴尔虎旗| 永德县| 威海市| 英山县| 新宁县|