- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 86字
- 2021-06-10 19:29:59
Decision tree learning
Decision tree learning builds a classification tree, where each node corresponds to one of the attributes; edges correspond to a possible value (or intervals) of the attribute from which the node originates; and each leaf corresponds to a class label. A decision tree can be used to visually and explicitly represent the prediction model, which makes it a very transparent (white box) classifier. Notable algorithms are ID3 and C4.5, although many alternative implementations and improvements exist (for example, J48 in Weka).
推薦閱讀
- 電力自動化實用技術問答
- Mastering Matplotlib 2.x
- 軟件架構設計
- Learning Apache Spark 2
- 計算機圖形圖像處理:Photoshop CS3
- 21天學通C++
- 自動檢測與轉換技術
- STM32G4入門與電機控制實戰:基于X-CUBE-MCSDK的無刷直流電機與永磁同步電機控制實現
- RPA:流程自動化引領數字勞動力革命
- Implementing Oracle API Platform Cloud Service
- Windows Server 2008 R2活動目錄內幕
- 機器人人工智能
- INSTANT Puppet 3 Starter
- Photoshop CS4數碼照片處理入門、進階與提高
- 大數據素質讀本