官术网_书友最值得收藏!

Decision tree learning

Decision tree learning builds a classification tree, where each node corresponds to one of the attributes; edges correspond to a possible value (or intervals) of the attribute from which the node originates; and each leaf corresponds to a class label. A decision tree can be used to visually and explicitly represent the prediction model, which makes it a very transparent (white box) classifier. Notable algorithms are ID3 and C4.5, although many alternative implementations and improvements exist (for example, J48 in Weka).

主站蜘蛛池模板: 宜阳县| 芦溪县| 桃园县| 聂拉木县| 内乡县| 奇台县| 沙洋县| 珲春市| 韶山市| 三台县| 曲沃县| 长乐市| 锡林浩特市| 萨嘎县| 长寿区| 西和县| 泸水县| 林口县| 肇庆市| 津南区| 法库县| 茌平县| 宽城| 江北区| 阿勒泰市| 保康县| 峨边| 山丹县| 宁城县| 天镇县| 无极县| 三穗县| 安国市| 驻马店市| 德州市| 永清县| 垫江县| 奎屯市| 株洲市| 汤阴县| 尼木县|