官术网_书友最值得收藏!

  • Machine Learning in Java
  • AshishSingh Bhatia Bostjan Kaluza
  • 86字
  • 2021-06-10 19:29:59

Decision tree learning

Decision tree learning builds a classification tree, where each node corresponds to one of the attributes; edges correspond to a possible value (or intervals) of the attribute from which the node originates; and each leaf corresponds to a class label. A decision tree can be used to visually and explicitly represent the prediction model, which makes it a very transparent (white box) classifier. Notable algorithms are ID3 and C4.5, although many alternative implementations and improvements exist (for example, J48 in Weka).

主站蜘蛛池模板: 绍兴县| 秭归县| 衡阳县| 民权县| 崇礼县| 莎车县| 汨罗市| 桐城市| 道真| 湖北省| 新化县| 嫩江县| 多伦县| 秦安县| 海林市| 渭南市| 南丹县| 盈江县| 忻城县| 浪卡子县| 嫩江县| 阳信县| 沽源县| 乐清市| 成都市| 双城市| 柳林县| 马龙县| 浦北县| 德保县| 房产| 盘山县| 资阳市| 鹿泉市| 马山县| 郓城县| 安图县| 缙云县| 安龙县| 济源市| 宝山区|