- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 71字
- 2021-06-10 19:29:56
Remove outliers
Outliers in data are values that are unlike any other values in the series and affect all learning methods to various degrees. These can be extreme values, which could be detected with confidence intervals and removed by using a threshold. The best approach is to visualize the data and inspect the visualization to detect irregularities. An example is shown in the following diagram. Visualization applies to low-dimensional data only:

推薦閱讀
- Big Data Analytics with Hadoop 3
- Spark編程基礎(chǔ)(Scala版)
- AWS:Security Best Practices on AWS
- Getting Started with Containerization
- UTM(統(tǒng)一威脅管理)技術(shù)概論
- 機器人智能運動規(guī)劃技術(shù)
- Security Automation with Ansible 2
- OpenStack Cloud Computing Cookbook(Second Edition)
- Windows 7寶典
- 嵌入式操作系統(tǒng)
- 計算機網(wǎng)絡(luò)原理與技術(shù)
- 具比例時滯遞歸神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性及其仿真與應(yīng)用
- 空間站多臂機器人運動控制研究
- 在實戰(zhàn)中成長:Windows Forms開發(fā)之路
- 精通數(shù)據(jù)科學(xué):從線性回歸到深度學(xué)習(xí)