官术网_书友最值得收藏!

What this book covers

Chapter 1Applied Machine Learning Quick Start, introduces the field of natural language processing (NLP). The tools and basic techniques that support NLP are discussed. The use of models, their validation, and their use from a conceptual perspective are presented.

Chapter 2Java Libraries and Platforms for Machine Learning, covers the purpose and uses of tokenizers. Different tokenization processes will be explored, followed by how they can be used to solve specific problems.

Chapter 3Basic Algorithms – Classification, Regression, and Clustering, covers the problems associated with sentence detection. Correct detection of the end of sentences is important for many reasons. We will examine different approaches to this problem using a variety of examples.

Chapter 4Customer Relationship Prediction with Ensembles, covers the process and problems associated with name recognition. Finding names, locations, and various things in a document is an important step in NLP. The techniques available are identified and demonstrated.

Chapter 5Affinity Analysis, covers the process of determining the part of speech that is useful in determining the importance of words and their relationships in a document. It is a process that can enhance the effectiveness of other NLP tasks.

Chapter 6Recommendation Engine with Apache Mahout, covers traditional features that do not apply to text documents. In this chapter, we'll learn how text documents can be presented.

Chapter 7Fraud and Anomaly Detection, covers information retrieval, which entails finding documents in an unstructured format, such as text that satisfies a query.

Chapter 8Image Recognition with Deeplearning4J, covers the issues surrounding how documents and text can be classified. Once we have isolated the parts of text, we can begin the process of analyzing it for information. One of these processes involves classifying and clustering information.

Chapter 9Activity Recognition with Mobile Phone Sensors, demonstrates how to discover topics in a set of documents.

Chapter 10Text Mining with Mallet – Topic Modeling and Spam Detection, covers the use of parsers and chunkers to solve text problems that are then examined. This important process, which normally results in a parse tree, provides insights into the structure and meaning of documents. 

Chapter 11What is Next?brings together many of the topics in previous chapters to address other more sophisticated problems. The use and construction of a pipeline is discussed. The use of open source tools to support these operations is presented.

主站蜘蛛池模板: 图片| 德庆县| 从化市| 和田市| 万荣县| 黄平县| 大兴区| 屯留县| 昭觉县| 黄龙县| 巩留县| 大方县| 崇阳县| 德格县| 建阳市| 滦平县| 襄汾县| 永仁县| 宜昌市| 达日县| 泊头市| 博客| 桐城市| 宣威市| 城步| 尼勒克县| 富宁县| 延津县| 抚顺县| 贵阳市| 溧阳市| 侯马市| 新邵县| 沂源县| 根河市| 潜江市| 都匀市| 瑞金市| 夹江县| 丘北县| 徐闻县|