官术网_书友最值得收藏!

Different Matplotlib styles

In this section, we will be learning about various styles provided by Matplotlib such as temporary styles or creating your own custom styles. The following are a few examples of different styles:

# Temporary styles
plt.style.use('classic')
from scipy.ndimage.filters import gaussian_filter
plt.subplot(221)
plt.plot(np.arange(0,1,0.01), np.power(np.arange(0,1,0.01), 3))
plt.ylabel('Axis Label')
plt.subplot(222)
with plt.style.context('ggplot'):
plt.scatter(np.random.normal(size=10), np.random.normal(size=10), c=np.random.normal(size=10))
plt.subplot(223)
plt.hist(np.random.normal(size=1000));
plt.hist(np.random.normal(1, size=1000));
plt.hist(np.random.normal(2, size=500));
plt.ylabel('Axis Label')
plt.xlabel('Axis Label')
plt.subplot(224)
plt.imshow(gaussian_filter(np.random.normal(size=(200,300)), sigma=10))
plt.xlabel('Axis Label')

Using the dark background will give you an image that shows up nicely on a dark background, hence if you're building slides, you might want to use the dark background style sheet:

# Custom styles
plt.style.use('bigpoints')
from scipy.ndimage.filters import gaussian_filter
plt.subplot(221)
plt.plot(np.arange(0,1,0.01), np.power(np.arange(0,1,0.01), 3), 'ko')
plt.ylabel('Axis Label')
plt.subplot(222)
plt.scatter(np.random.normal(size=10), np.random.normal(size=10), c=np.random.normal(size=10))
plt.subplot(223)
plt.hist(np.random.normal(size=1000));
plt.hist(np.random.normal(1, size=1000));
plt.hist(np.random.normal(2, size=500));
plt.ylabel('Axis Label')
plt.xlabel('Axis Label')
plt.subplot(224)
plt.imshow(gaussian_filter(np.random.normal(size=(200,300)), sigma=10))
plt.xlabel('Axis Label')

You will see the output, which shows the black background:

You can also choose style sheets temporarily. So, previously, we have chose a style sheet that affects all four plots. If, for example, I take my scatter plot and put it in a with plt.style.context block and choose a style sheet, let's say ggplot, you can see that we have actually overridden it, as shown here:

# Temporary styles
plt.style.use('classic')
from scipy.ndimage.filters import gaussian_filter
plt.subplot(221)
plt.plot(np.arange(0,1,0.01), np.power(np.arange(0,1,0.01), 3))
plt.ylabel('Axis Label')
plt.subplot(222)
with plt.style.context('ggplot'):
plt.scatter(np.random.normal(size=10), np.random.normal(size=10), c=np.random.normal(size=10))
plt.subplot(223)
plt.hist(np.random.normal(size=1000));
plt.hist(np.random.normal(1, size=1000));
plt.hist(np.random.normal(2, size=500));
plt.ylabel('Axis Label')
plt.xlabel('Axis Label')
plt.subplot(224)
plt.imshow(gaussian_filter(np.random.normal(size=(200,300)), sigma=10))
plt.xlabel('Axis Label')

From the preceding code, we can see there's a small difference, but the color map has changed:

So, this one scatter plot has temporarily used a different set of choices for the appearance compared to the previous ones, so the other panels here are using the classic style sheet, whereas this is using ggplot, which changes the attributes of these points.

主站蜘蛛池模板: 洛扎县| 兴山县| 泽普县| 商南县| 渝北区| 内丘县| 南丰县| 肃南| 平原县| 遂平县| 保山市| 阿拉善左旗| 喀喇沁旗| 宣汉县| 靖西县| 西乌珠穆沁旗| 天峨县| 万源市| 天台县| 保靖县| 衢州市| 黑龙江省| 武夷山市| 伊金霍洛旗| 大英县| 江口县| 华阴市| 凌云县| 赫章县| 石台县| 泸定县| 肥城市| 同江市| 酒泉市| 山阴县| 民县| 鞍山市| 新蔡县| 黄龙县| 新营市| 桂林市|