官术网_书友最值得收藏!

Decision rule – a brief overview of the p-value approach

Just to be clear, the expected result from a hypothesis test is whether the researcher (you) is rejecting or failing to reject the null hypothesis. The heuristic adopted to go for one or the other is called the decision rule; basically, the rule used to either reject the null hypothesis or not.

The most common decision rule is to fix a limit to the significance level in advance. This limit can be seen as the greater probability of committing a type I error you're willing to risk; that is, the greater chance to reject the null hypothesis while it was actually right. Common numbers are 5% and 1% (these are usually arbitrary).

With your number at hand, you can check whether the p-value output by the test is greater or lower in comparison to this limit (which is the significance level, α). Let's say that you picked 5% and you get a p-value of 0.1 (10%); hence, you may say that you failed to reject the null hypothesis within 5% level of significance. But what if you get a p-value of 0.001 (0.1%)? You could even say that you were able to reject the null hypothesis within 1% level of significance. It's a good practice to show the actual p-value to the audience.

If your p-value is exactly equal to alpha, you may also fail to reject the null hypothesis.

In the immediately previous example, the p-value was 0.06313; hence, we should fail to reject the null hypothesis within 5% level of significance. This means that we don't deny that the true mean could be equal to ten as our null hypothesis assumed. There may be more reasonable (and laborious) ways to set your significance level. 5% seems to be a widely adopted number among researchers in various fields and it's definitely a magical number.

The 5% level got very popular most probably because of Fisher's famous book, Statistical Methods for Research Workers, that showed tables for this level of significance.

Clearly stating your decision and showing the test statistic, p-value, and the confidence interval is probably the better way to go. You can also set your alpha based on the expected outcomes from not rejecting the H0 while it's true versus rejecting it (while it's true). This may be challenging but pretty cool and goes very well with a thing called test's power (β).

主站蜘蛛池模板: 海丰县| 承德市| 沙田区| 富蕴县| 闽清县| 江口县| 怀安县| 讷河市| 晴隆县| 凌源市| 江门市| 武隆县| 银川市| 涞水县| 桐乡市| 五莲县| 日喀则市| 紫云| 奉节县| 长寿区| 蕲春县| 东方市| 新巴尔虎右旗| 枣庄市| 巴彦淖尔市| 辽阳县| 靖州| 岳普湖县| 从江县| 伊金霍洛旗| 鄂伦春自治旗| 康保县| 屯昌县| 前郭尔| 广安市| 赣榆县| 蒙自县| 瑞丽市| 天台县| 东莞市| 盐城市|