官术网_书友最值得收藏!

Logistic regression with Keras

Keras is a high-level library that is available as part of TensorFlow. In this section, we will rebuild the same model we built earlier with TensorFlow core with Keras:

  1. Keras takes data in a different format, and so we must first reformat the data using datasetslib:
x_train_im = mnist.load_images(x_train)

x_train_im, x_test_im = x_train_im / 255.0, x_test / 255.0

In the preceding code, we are loading the training images in memory before both the training and test images are scaled, which we do by dividing them by 255.

  1. Then, we build the model:
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
  1. Compile the model with the sgd optimizer. Set the categorical entropy as the loss function and the accuracy as a metric to test the model:
model.compile(optimizer='sgd',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
  1. Train the model for 5 epochs with the training set of images and labels:
model.fit(x_train_im, y_train, epochs=5)

Epoch 1/5 60000/60000 [==============================] - 3s 45us/step - loss: 0.7874 - acc: 0.8095 Epoch 2/5 60000/60000 [==============================] - 3s 42us/step - loss: 0.4585 - acc: 0.8792 Epoch 3/5 60000/60000 [==============================] - 2s 42us/step - loss: 0.4049 - acc: 0.8909 Epoch 4/5 60000/60000 [==============================] - 3s 42us/step - loss: 0.3780 - acc: 0.8965 Epoch 5/5 60000/60000 [==============================] - 3s 42us/step - loss: 0.3610 - acc: 0.9012 10000/10000 [==============================] - 0s 24us/step
  1. Evaluate the model with the test data:
model.evaluate(x_test_im, nputil.argmax(y_test))

We get the following evaluation scores as output:

[0.33530342621803283, 0.9097]

Wow! Using Keras, we can achieve higher accuracy. We achieved approximately 90% accuracy. This is because Keras internally sets many optimal values for us so that we can quickly start building models.

To learn more about Keras and to look at more examples, refer to the book Mastering TensorFlow, from Packt Publications.
主站蜘蛛池模板: 承德市| 固安县| 湟中县| 南开区| 璧山县| 枞阳县| 论坛| 砚山县| 临清市| 陕西省| 霞浦县| 冀州市| 闵行区| 焦作市| 澜沧| 思南县| 泰来县| 茌平县| 高陵县| 阿图什市| 忻城县| 二手房| 荥阳市| 蓬溪县| 潼关县| 开鲁县| 南通市| 兰西县| 江达县| 卓尼县| 日土县| 临泽县| 丘北县| 沙洋县| 武鸣县| 洱源县| 海伦市| 治多县| 炎陵县| 乌兰察布市| 岑溪市|