官术网_书友最值得收藏!

Multiple graphs

We can create our own graphs, which are separate from the default graph, and execute them in a session. However, creating and executing multiple graphs is not recommended, because of the following disadvantages:

  • Creating and using multiple graphs in the same program would require multiple TensorFlow sessions, and each session would consume heavy resources
  • Data cannot be directly passed in-between graphs

Hence, the recommended approach is to have multiple subgraphs in a single graph. In case we wish to use our own graph instead of the default graph, we can do so with the tf.graph() command. In the following example, we create our own graph, g, and execute it as the default graph:

g = tf.Graph()
output = 0

# Assume Linear Model y = w * x + b

with g.as_default():
# Define model parameters
w = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
# Define model input and output
x = tf.placeholder(tf.float32)
y = w * x + b

with tf.Session(graph=g) as tfs:
# initialize and print the variable y
tf.global_variables_initializer().run()
output = tfs.run(y,{x:[1,2,3,4]})

print('output : ',output)

Now, let's put this learning into practice and implement the classification of handwritten digital images with TensorFlow.

主站蜘蛛池模板: 乐业县| 宁城县| 万源市| 南平市| 台中县| 莱阳市| 余江县| 盖州市| 玉山县| 屏山县| 泸西县| 博乐市| 玉屏| 韩城市| 株洲县| 汶上县| 乃东县| 海晏县| 平江县| 子洲县| 通辽市| 合阳县| 盐池县| 高要市| 安吉县| 丹巴县| 晋江市| 五华县| 花莲县| 高安市| 哈尔滨市| 博野县| 信阳市| 榆社县| 郧西县| 福州市| 余干县| 留坝县| 泸西县| 广汉市| 荔波县|