官术网_书友最值得收藏!

Constants

The constant valued tensors are created using the tf.constant() function, and has the following definition:

tf.constant(
value,
dtype=None,
shape=None,
name='const_name',
verify_shape=False
)

Let's create some constants with the following code:

const1=tf.constant(34,name='x1')
const2=tf.constant(59.0,name='y1')
const3=tf.constant(32.0,dtype=tf.float16,name='z1')

Let's take a look at the preceding code in detail:

  • The first line of code defines a constant tensor, const1, stores a value of 34, and names it x1.
  • The second line of code defines a constant tensor, const2, stores a value of 59.0, and names it y1.
  • The third line of code defines the data type as tf.float16 for const3. Use the dtype parameter or place the data type as the second argument to denote the data type. 

Let's print the constants const1, const2, and const3:

print('const1 (x): ',const1)
print('const2 (y): ',const2)
print('const3 (z): ',const3)

When we print these constants, we get the following output:

const1 (x):  Tensor("x:0", shape=(), dtype=int32)
const2 (y): Tensor("y:0", shape=(), dtype=float32)
const3 (z): Tensor("z:0", shape=(), dtype=float16)
Upon printing the previously defined tensors, we can see that the data types of   const1  and   const2  are automatically deduced by TensorFlow.

To print the values of these constants, we can execute them in a TensorFlow session with the tfs.run() command:

print('run([const1,const2,c3]) : ',tfs.run([const1,const2,const3]))

We will see the following output:

run([const1,const2,const3]) : [34, 59.0, 32.0]
主站蜘蛛池模板: 巨野县| 灌云县| 陕西省| 综艺| 循化| 肥西县| 墨玉县| 沙雅县| 谷城县| 偃师市| 大安市| 阜城县| 宝鸡市| 永寿县| 两当县| 噶尔县| 理塘县| 西乌珠穆沁旗| 蓬溪县| 邛崃市| 崇义县| 紫金县| 颍上县| 绥德县| 柳河县| 芦山县| 莒南县| 洞口县| 奎屯市| 安泽县| 巴彦淖尔市| 临夏市| 周口市| 永安市| 措美县| 通河县| 竹溪县| 万安县| 柘城县| 小金县| 珲春市|