官术网_书友最值得收藏!

Data quality

It is important that the stored data is useful, error-free, and meant for its intended purpose. High-quality data gives actionable insights, whereas poor-quality data leads to poor analysis, and hence, to poor decisions. Errors in the data in these industries can break regulations, leading to legal complications. The following factors can help to evaluate data quality:

  • Completeness: Are there values missing in the data set?
  • Validity: The data matches the rule set
  • Uniqueness: The data has minimal redundancies. 
  • Consistency: The data is consistent across various data stores. 
  • Timeliness: The data represents reality from a required point in time. 
  • Accuracy: The degree to which the result of a particular measurement, calculation, or specification conforms to the correct value.
主站蜘蛛池模板: 玉林市| 谢通门县| 海南省| 英德市| 玉溪市| 兴安县| 闻喜县| 旬阳县| 合水县| 同江市| 三穗县| 沙坪坝区| 睢宁县| 容城县| 青海省| 镇巴县| 古浪县| 墨玉县| 阆中市| 申扎县| 枣庄市| 肃宁县| 五华县| 吉林省| 犍为县| 宁蒗| 望城县| 鱼台县| 九龙县| 紫阳县| 苍溪县| 汉川市| 泉州市| 融水| 博兴县| 马边| 嘉黎县| 沙雅县| 日照市| 文山县| 桦甸市|