- Bayesian Analysis with Python
- Osvaldo Martin
- 81字
- 2021-08-20 10:13:31
Flipping coins the PyMC3 way
Let's revisit the coin-flipping problem from Chapter 1, Thinking Probabilistically, but this time using PyMC3. We will use the same synthetic data we used in that chapter. Since we are generating the data, we know the true value of , called theta_real, in the following code. Of course, for a real dataset, we will not have this knowledge:
np.random.seed(123)
trials = 4
theta_real = 0.35 # unknown value in a real experiment
data = stats.bernoulli.rvs(p=theta_real, size=trials)
推薦閱讀
- Canvas LMS Course Design
- 大數據專業(yè)英語
- Getting Started with Containerization
- Zabbix Network Monitoring(Second Edition)
- Arduino &樂高創(chuàng)意機器人制作教程
- 具比例時滯遞歸神經網絡的穩(wěn)定性及其仿真與應用
- Windows Server 2003系統安全管理
- Excel 2010函數與公式速查手冊
- HBase Essentials
- Mastering Predictive Analytics with scikit:learn and TensorFlow
- 計算機應用基礎實訓(職業(yè)模塊)
- Creating ELearning Games with Unity
- 玩機器人 學單片機
- Hands-On Microservices with C#
- Mastercam X5應用技能基本功特訓