官术网_书友最值得收藏!

Learning the initializations

In this method, we try to learn optimal initial parameter values. What do we mean by that? Let's say we are a building a neural network to classify images. First, we initialize random weights, calculate loss, and minimize the loss through a gradient descent. So, we will find the optimal weights through gradient descent and minimize the loss. Instead of initializing the weights randomly, if can we initialize the weights with optimal values or close to optimal values, then we can attain the convergence faster and we can learn very quickly. We will see how exactly we can find these optimal initial weights with algorithms such as MAML, Reptile, and Meta-SGD in the upcoming chapters.

主站蜘蛛池模板: 洞口县| 广州市| 沾益县| 神农架林区| 海口市| 安泽县| 济宁市| 民丰县| 云林县| 侯马市| 潞西市| 望都县| 澄迈县| 博爱县| 湘阴县| 武平县| 邳州市| 吉木萨尔县| 铜陵市| 禄劝| 苍梧县| 且末县| 绥化市| 基隆市| 介休市| 延吉市| 乌恰县| 响水县| 金乡县| 赫章县| 屯门区| 肃北| 万源市| 庆阳市| 探索| 红河县| 金塔县| 探索| 喀什市| 宝兴县| 北海市|