官术网_书友最值得收藏!

Learning the initializations

In this method, we try to learn optimal initial parameter values. What do we mean by that? Let's say we are a building a neural network to classify images. First, we initialize random weights, calculate loss, and minimize the loss through a gradient descent. So, we will find the optimal weights through gradient descent and minimize the loss. Instead of initializing the weights randomly, if can we initialize the weights with optimal values or close to optimal values, then we can attain the convergence faster and we can learn very quickly. We will see how exactly we can find these optimal initial weights with algorithms such as MAML, Reptile, and Meta-SGD in the upcoming chapters.

主站蜘蛛池模板: 封开县| 治县。| 左权县| 安阳县| 和田县| 安福县| 井冈山市| 霍林郭勒市| 壤塘县| 青铜峡市| 汉寿县| 绍兴市| 吴堡县| 武胜县| 墨脱县| 安龙县| 湟中县| 昌黎县| 乡宁县| 新竹县| 吉首市| 旬阳县| 鄂托克旗| 木里| 徐闻县| 望城县| 沂南县| 东台市| 庆阳市| 都匀市| 孟州市| 西青区| 滨州市| 遂平县| 和静县| 林西县| 信丰县| 霍林郭勒市| 凤冈县| 涡阳县| 疏附县|