官术网_书友最值得收藏!

Learning the initializations

In this method, we try to learn optimal initial parameter values. What do we mean by that? Let's say we are a building a neural network to classify images. First, we initialize random weights, calculate loss, and minimize the loss through a gradient descent. So, we will find the optimal weights through gradient descent and minimize the loss. Instead of initializing the weights randomly, if can we initialize the weights with optimal values or close to optimal values, then we can attain the convergence faster and we can learn very quickly. We will see how exactly we can find these optimal initial weights with algorithms such as MAML, Reptile, and Meta-SGD in the upcoming chapters.

主站蜘蛛池模板: 肇州县| 商水县| 乌审旗| 潜江市| 兴城市| 油尖旺区| 搜索| 古蔺县| 株洲县| 承德市| 黄陵县| 镇康县| 开封市| 辉南县| 铜陵市| 上思县| 仁寿县| 北碚区| 婺源县| 贵定县| 涟水县| 开江县| 厦门市| 莎车县| 黔江区| 虹口区| 赤壁市| 永顺县| 临猗县| 大宁县| 忻城县| 兴海县| 石屏县| 尤溪县| 隆昌县| 高要市| 萨迦县| 福海县| 平武县| 九台市| 吕梁市|