官术网_书友最值得收藏!

Learning the initializations

In this method, we try to learn optimal initial parameter values. What do we mean by that? Let's say we are a building a neural network to classify images. First, we initialize random weights, calculate loss, and minimize the loss through a gradient descent. So, we will find the optimal weights through gradient descent and minimize the loss. Instead of initializing the weights randomly, if can we initialize the weights with optimal values or close to optimal values, then we can attain the convergence faster and we can learn very quickly. We will see how exactly we can find these optimal initial weights with algorithms such as MAML, Reptile, and Meta-SGD in the upcoming chapters.

主站蜘蛛池模板: 大石桥市| 蓬莱市| 灵台县| 汝阳县| 阳原县| 元氏县| 枣阳市| 喀喇沁旗| 新龙县| 金平| 大余县| 鸡西市| 株洲市| 永福县| 建始县| 陕西省| 南雄市| 平顺县| 若羌县| 曲水县| 潢川县| 赤壁市| 吉木乃县| 永宁县| 屏东县| 汕尾市| 昌吉市| 长春市| 武乡县| 贺州市| 江华| 南投市| 潍坊市| 梅州市| 左贡县| 九寨沟县| 长武县| 时尚| 正宁县| 锡林郭勒盟| 灵武市|