- R Machine Learning Projects
- Dr. Sunil Kumar Chinnamgari
- 73字
- 2021-07-02 14:23:08
Performance metrics
A model needs to be evaluated on unseen data to assess its goodness. The term goodness may be expressed in several ways and these ways are termed as model performance metrics.
Several metrics exist to report the performance of models. Accuracy, precision, recall, F-score, sensitivity, specificity, AUROC curve, root mean squared error (RMSE), Hamming loss, and mean squared error (MSE) are some of the popular model performance metrics among others.
推薦閱讀
- 工業(yè)機(jī)器人技術(shù)及應(yīng)用
- 樂高機(jī)器人EV3設(shè)計(jì)指南:創(chuàng)造者的搭建邏輯
- Cloud Analytics with Microsoft Azure
- JMAG電機(jī)電磁仿真分析與實(shí)例解析
- CompTIA Network+ Certification Guide
- 工業(yè)機(jī)器人操作與編程
- Learning C for Arduino
- 數(shù)據(jù)庫(kù)系統(tǒng)原理及應(yīng)用教程(第5版)
- Lightning Fast Animation in Element 3D
- Ruby on Rails敏捷開發(fā)最佳實(shí)踐
- 空間站多臂機(jī)器人運(yùn)動(dòng)控制研究
- 人工智能:語言智能處理
- Mastering MongoDB 3.x
- 貫通開源Web圖形與報(bào)表技術(shù)全集
- 計(jì)算機(jī)應(yīng)用基礎(chǔ)實(shí)訓(xùn)(職業(yè)模塊)