官术网_书友最值得收藏!

Moving data

The introductory snippet showed code that spawns a thread but did not pass any data into the scope. Just like any other scope, it requires either ownership of a value or at least a borrowed reference in order to work with that data. In this case, passing ownership is what we want, something that is called moving data into the scope.

If we change the snippet from the introduction to include a simple variable to print from within the thread, compilation is going to fail:

use std::thread; 

fn threading() {
let x = 10;
let handle = thread::spawn(|| {
println!("Hello from a thread, the number is {}", x);
});
handle.join().unwrap();
}

The reason for this is simple: the compiler cannot determine the lifetimes of each of the scopes (will x still be there when the thread needs it?), so it refuses to compile the code:

Compiling ch1 v0.1.0 (file:///code/ch1) 
error[E0373]: closure may outlive the current function, but it borrows `x`, which is owned by the current function
--> src/main.rs:5:32
|
5 | let handle = thread::spawn(|| {
| ^^ may outlive borrowed value `x`
6 | println!("Hello from a thread, the number is {}", x);
| - `x` is borrowed here
help: to force the closure to take ownership of `x` (and any other referenced variables), use the `move` keyword
|
5 | let handle = thread::spawn(move || {
| ^^^^^^^

As the compiler messages indicate, adding the move keyword will solve the issue! This keyword lets a thread pass ownership to a different thread; it "moves" the memory area:

fn threading() { 
let x = 10;
let handle = thread::spawn(move || {
println!("Hello from a thread, the number is {}", x);
});
handle.join().unwrap();
}

When running this snippet, the output is as follows:

Hello from a thread, the number is 10

However, for passing multiple messages into a thread or implementing an actor model, the Rust standard library offers channels. Channels are single-consumer, multi-producer queues that let the caller send messages from multiple threads.

This snippet will spawn 10 threads and have each send a number into the channel, where it will be collected into a vector after the senders have finished executing:

use std::sync::mpsc::{channel, Sender, Receiver};

fn channels() {
const N: i32 = 10;
let (tx, rx): (Sender<i32>, Receiver<i32>) = channel();
let handles = (0..N).map(|i| {
let _tx = tx.clone();
thread::spawn(move || {
// don't use the result
let _ = _tx.send(i).unwrap();
})
});
// close all threads
for h in handles {
h.join().unwrap();
}
// receive N times
let numbers: Vec<i32> = (0..N).map(|_|
rx.recv().unwrap()
).collect();

println!("{:?}", numbers);
}

As expected, the output is as follows:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

With these tools, a multithreaded application can move data between threads without the need for manual locking or the dangers of inadvertently creating side effects.

主站蜘蛛池模板: 南雄市| 兴山县| 安康市| 博兴县| 南阳市| 都昌县| 镇江市| 林口县| 鸡东县| 土默特左旗| 广平县| 且末县| 托克逊县| 盐亭县| 洛阳市| 滨海县| 瑞丽市| 松江区| 织金县| 宝坻区| 岱山县| 永登县| 蒲江县| 泊头市| 通城县| 乌审旗| 黄浦区| 绵竹市| 乌苏市| 安平县| 手游| 闻喜县| 汤阴县| 涪陵区| 清原| 衢州市| 丰城市| 崇阳县| 青岛市| 额尔古纳市| 红原县|