- Machine Learning Quick Reference
- Rahul Kumar
- 55字
- 2021-08-20 10:05:07
Model selection using cross-validation
We can make use of cross-validation to find out which model is performing better by using the following code:
knn = KNeighborsClassifier(n_neighbors=20)
print(cross_val_score(knn, X, y, cv=10, scoring='accuracy').mean())
The 10-fold cross-validation is as follows:
# 10-fold cross-validation with logistic regression
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
print(cross_val_score(logreg, X, y, cv=10, scoring='accuracy').mean())
推薦閱讀
- Mastering Mesos
- 基于C語(yǔ)言的程序設(shè)計(jì)
- 電力自動(dòng)化實(shí)用技術(shù)問(wèn)答
- 機(jī)器人編程實(shí)戰(zhàn)
- Implementing Oracle API Platform Cloud Service
- 高維聚類(lèi)知識(shí)發(fā)現(xiàn)關(guān)鍵技術(shù)研究及應(yīng)用
- Nginx高性能Web服務(wù)器詳解
- 單片機(jī)C語(yǔ)言程序設(shè)計(jì)完全自學(xué)手冊(cè)
- 從零開(kāi)始學(xué)PHP
- C++程序設(shè)計(jì)基礎(chǔ)(上)
- 大數(shù)據(jù)導(dǎo)論
- Natural Language Processing and Computational Linguistics
- EJB JPA數(shù)據(jù)庫(kù)持久層開(kāi)發(fā)實(shí)踐詳解
- Raspberry Pi Projects for Kids
- 伺服與運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)