官术网_书友最值得收藏!

JSON files with the pandas module

JSON strings or files can be read with the pandas.read_json() function, which returns a DataFrame or series object. For example, the following code reads the zips.json file:

df = pd.read_json(os.path.join(data_folder,data_file), lines=True)
print(df)

We set lines=True because each line contains a separate object in JSON format. Without this argument being set to True, pandas will raise ValueError. The DataFrame is printed as follows:

         _id             city                               loc    pop state
0       1001           AGAWAM           [-72.622739, 42.070206]  15338    MA
1       1002          CUSHMAN            [-72.51565, 42.377017]  36963    MA
...      ...              ...                               ...    ...   ...
29351  99929         WRANGELL          [-132.352918, 56.433524]   2573    AK
29352  99950        KETCHIKAN           [-133.18479, 55.942471]    422    AK

[29353 rows x 5 columns]

To save the pandas DataFrame or series object to a JSON file or string, use the Dataframe.to_json() function.

While CSV and JSON remain the most popular data formats for IoT data, due to its large size, it is often necessary to distribute data. There are two popular distributed mechanisms for data storage and access: HDF5 and HDFS. Let's first learn about the HDF5 format.

主站蜘蛛池模板: 正镶白旗| 海伦市| 梁山县| 北辰区| 大港区| 油尖旺区| 综艺| 鄂伦春自治旗| 乐山市| 思茅市| 都江堰市| 苍梧县| 汉川市| 胶州市| 阳泉市| 唐山市| 修文县| 七台河市| 共和县| 南安市| 镇安县| 南城县| 尉犁县| 康乐县| 武宁县| 尼玛县| 黑山县| 平武县| 根河市| 翁源县| 思茅市| 临夏县| 镇坪县| 邯郸市| 包头市| 福建省| 江孜县| 永昌县| 南京市| 巴彦县| 牡丹江市|