- Machine Learning with the Elastic Stack
- Rich Collier Bahaaldine Azarmi
- 224字
- 2021-07-02 13:48:16
ML nodes
First and foremost, since Elasticsearch is, by nature, a distributed multi-node solution, it is only natural that the ML feature of the Elastic Stack works as a native plugin that obeys many of the same operational concepts. As described in the documentation, ML can be enabled on any or all nodes, but it is a best practice in a production system to have dedicated ML nodes. This is helpful to optimize the types of resources specifically required by ML. Unlike data nodes that are involved in a fair amount of I/O load due to indexing and searching, ML nodes are more compute and memory intensive. With this knowledge, you can size the hardware appropriately for dedicated ML nodes.
One key thing to note—the ML algorithms do not run in the JVM. They are C++-based executables that will use the RAM that is left over from whatever is allocated for the Java Virtual Machine (JVM) heap. When running a job, the main process that invokes the analysis (called autodetect) can be seen in the process list:

View of top processes when a ML job is running
There will be one autodetect process for every actively running ML job. In multi-node setups, ML will distribute the jobs to each of the ML-enabled nodes to balance the load of the work.
- 電力自動化實用技術問答
- Div+CSS 3.0網頁布局案例精粹
- 實時流計算系統設計與實現
- Drupal 7 Multilingual Sites
- 計算機控制技術
- Hands-On Neural Networks with Keras
- CorelDRAW X4中文版平面設計50例
- Lightning Fast Animation in Element 3D
- INSTANT VMware vCloud Starter
- INSTANT Adobe Story Starter
- HBase Essentials
- Java組件設計
- Data Analysis with R(Second Edition)
- 企業級Web開發實戰
- JSP通用范例開發金典