官术网_书友最值得收藏!

Face Aging Using Conditional GAN

Conditional GANs (cGANs) are an extension of the GAN model. They allow for the generation of images that have certain conditions or attributes and have proved to be better than vanilla GANs as a result. In this chapter, we will implement a cGAN that, once trained, can perform automatic face aging. The cGAN network that we will implement was first introduced by Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay, in their paper titled Face Aging With Conditional Generative Adversarial Networks, which can be found at the following link: https://arxiv.org/pdf/1702.01983.pdf

In this chapter, we will cover the following topics:

  • Introducing cGANs for face aging
  • Setting up the project
  • Preparing the data
  • A Keras implementation of a cGAN
  • Training a cGAN
  • Evaluation and hyperparameter tuning
  • Practical applications of face aging 
主站蜘蛛池模板: 阿克陶县| 涿州市| 政和县| 沙雅县| 义乌市| 保靖县| 建湖县| 沧州市| 尤溪县| 桐城市| 西丰县| 金秀| 辰溪县| 定兴县| 龙江县| 冀州市| 广水市| 饶河县| 泰顺县| 黄石市| 特克斯县| 来安县| 增城市| 武穴市| 建始县| 北碚区| 祁连县| 温州市| 新津县| 台中市| 汕头市| 乐陵市| 阜康市| 桑植县| 延长县| 民乐县| 搜索| 昌吉市| 丰宁| 留坝县| 湖口县|