官术网_书友最值得收藏!

Objective function

The objective function is the main method for training a 3D-GAN. It provides loss values, which are used to calculate gradients and then to update the weight values. The adversarial loss function for a 3D-GAN is as follows:

Here, log(D(x)) is the binary cross-entropy loss or classification loss, log(1-D(G(z))) is the adversarial loss, z is the latent vector from probabilistic space p(z), D(x) is the output from the discriminator network, and G(z) is the output from the generator network.

主站蜘蛛池模板: 临沧市| 壶关县| 六枝特区| 昭苏县| 平阴县| 克什克腾旗| 正蓝旗| 桑日县| 长海县| 临沧市| 隆德县| 连江县| 两当县| 安泽县| 高邮市| 南城县| 长沙市| 邵阳县| 安福县| 揭阳市| 忻城县| 彭州市| 若尔盖县| 渭源县| 剑河县| 榆林市| 新竹县| 榆社县| 盐池县| 太康县| 长泰县| 杨浦区| 囊谦县| 永州市| 泽普县| 江西省| 资溪县| 托里县| 依兰县| 罗田县| 藁城市|