官术网_书友最值得收藏!

The architecture of the discriminator network

The discriminator network contains five volumetric convolutional layers with the following configuration:

  • 3D convolutional layers: 5
  • Channels: 64, 128, 256, 512, 1
  • Kernel sizes: 4, 4, 4, 4, 4
  • Strides: 2, 2, 2, 2, 1
  • Activations: Leaky ReLU, Leaky ReLU, Leaky ReLU, Leaky ReLU, Sigmoid
  • Batch normalization: Yes, Yes, Yes, Yes, None
  • Pooling layers: No, No, No, No, No
  • Linear layers: No, No, No, No, No

The input and output of the network are as follows:

  • InputA 3D image with shape (64, 64, 64) 
  • Output: The probability of the input data belonging to either the real or the fake class

The flow of the tensors and the input and output shapes of the tensors for each layer in the discriminator network are shown in the following diagram. This will provide you with a better understanding of the discriminator network:

The discriminator network mostly mirrors the generator network. An important difference is that it uses LeakyReLU instead of ReLU as the activation function. Also, the sigmoid layer at the end of the network is for binary classification and predicts whether the provided image is real or fake. The last layer has no normalization layer, but the other layers use batch normalization to regularize the input.

主站蜘蛛池模板: 桃江县| 新巴尔虎左旗| 金寨县| 沧源| 黑龙江省| 忻城县| 和平区| 文安县| 萍乡市| 盐津县| 安仁县| 仁布县| 兴安县| 建德市| 余庆县| 雷波县| 湖北省| 开鲁县| 岳普湖县| 石城县| 怀来县| 道孚县| 社旗县| 当雄县| 嫩江县| 沈丘县| 南投县| 双辽市| 孝感市| 贵溪市| 全椒县| 汉寿县| 桑植县| 台州市| 五台县| 宝山区| 福清市| 奎屯市| 航空| 古蔺县| 静安区|