官术网_书友最值得收藏!

The architecture of the generator network

The generator network contains five volumetric, fully convolutional layers with the following configuration:

  • Convolutional layers: 5
  • Filters512, 256, 128, 64, 1
  • Kernel size: 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4
  • Strides: 1, 2, 2, 2, 2 or (1, 1), (2, 2), (2, 2), (2, 2), (2, 2) 
  • Batch normalization: Yes, Yes, Yes, Yes, No
  • Activations: ReLU, ReLU, ReLU, ReLU, Sigmoid
  • Pooling layers: No, No, No, No, No
  • Linear layers: No, No, No, No, No

The input and output of the network are as follows:

  • Input: A 200-dimensional vector sampled from a probabilistic latent space
  • Output: A 3D image with a shape of 64x64x64

 The architecture of the generator can be seen in the following image:

The flow of the tensors and the input and output shapes of the tensors for each layer in the discriminator network are shown in the following diagram. This will give you a better understanding of the network:

A fully convolutional network is a network without fully connected dense layers at the end of the network. Instead, it just consists of convolutional layers and can be end-to-end trained, like a convolutional network with fully connected layers. There are no pooling layers in a generator network.
主站蜘蛛池模板: 阜康市| 宜君县| 都安| 抚松县| 玉溪市| 阳朔县| 思茅市| 河北区| 乌兰县| 台北市| 钟山县| 建德市| 扎囊县| 潮安县| 定安县| 鹤壁市| 邢台市| 盘锦市| 屏边| 大悟县| 上饶市| 昌黎县| 博湖县| 钟祥市| 体育| 明星| 毕节市| 铜陵市| 佛教| 建宁县| 沿河| 贵德县| 郯城县| 金华市| 贡嘎县| 北川| 陵川县| 黄山市| 莱州市| 南澳县| 宕昌县|