官术网_书友最值得收藏!

Introduction to 3D-GANs

3D Generative Adversarial Networks (3D-GANs) is a variant of GANs, just like StackGANs, CycleGANs, and Super-Resolution Generative Adversarial Networks (SRGANs). Similar to a vanilla GAN, it has a generator and a discriminator model. Both of the networks use 3D convolutional layers, instead of using 2D convolutions. If provided with enough data, it can learn to generate 3D shapes with good visual quality.

Let's understand 3D convolutions before looking closer at the 3D-GAN network.

主站蜘蛛池模板: 巴南区| 阿拉尔市| 富民县| 田阳县| 财经| 东莞市| 卢氏县| 南和县| 华池县| 邛崃市| 出国| 汕头市| 屏边| 梧州市| 新平| 绥棱县| 资兴市| 渝北区| 绥阳县| 托克托县| 平顶山市| 玉树县| 枣强县| 明光市| 隆子县| 金阳县| 黎平县| 萝北县| 武夷山市| 莱阳市| 淳安县| 巴彦淖尔市| 太仓市| 石柱| 子长县| 上栗县| 滦平县| 年辖:市辖区| 巴青县| 武平县| 大厂|