- Generative Adversarial Networks Projects
- Kailash Ahirwar
- 101字
- 2021-07-02 13:38:47
Internal covariate shift
An internal covariate shift occurs when there is a change in the input distribution to our network. When the input distribution changes, hidden layers try to learn to adapt to the new distribution. This slows down the training process. If a process slows down, it takes a long time to converge to a global minimum. This problem occurs when the statistical distribution of the input to the networks is drastically different from the input that it has seen before. Batch normalization and other normalization techniques can solve this problem. We will explore these in the following sections.
推薦閱讀
- Mastering Matplotlib 2.x
- 計算機圖形學
- 網絡服務器架設(Windows Server+Linux Server)
- 數據運營之路:掘金數據化時代
- 模型制作
- 工業機器人現場編程(FANUC)
- 21天學通C#
- 21天學通Java Web開發
- INSTANT Autodesk Revit 2013 Customization with .NET How-to
- CentOS 8 Essentials
- 高維聚類知識發現關鍵技術研究及應用
- 中國戰略性新興產業研究與發展·增材制造
- Machine Learning Algorithms(Second Edition)
- 單片機原理實用教程
- 基于人工免疫原理的檢測系統模型及其應用