官术网_书友最值得收藏!

How to do it...

  1. Import the relevant dataset (Please refer to the Predicting house price.ipynb file in GitHub while implementing the code and for the recommended dataset):
from keras.datasets import boston_housing
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
  1. Normalize the input and output dataset so that all variables have a range from zero to one:
import numpy as np
train_data2 = train_data/np.max(train_data,axis=0)
test_data2 = test_data/np.max(train_data,axis=0)
train_targets = train_targets/np.max(train_targets)
test_targets = test_targets/np.max(train_targets)

Note that we have normalized the test dataset with the maximum value in the train dataset itself, as we should not be using any of the values from the test dataset in the model-building process. Additionally, note that we have normalized both the input and the output values.

  1. Now that the input and output datasets are prepared, let's proceed and define the model:
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.utils import np_utils
from keras.regularizers import l1
model = Sequential()
model.add(Dense(64, input_dim=13, activation='relu', kernel_regularizer = l1(0.1)))
model.add(Dense(1, activation='relu', kernel_regularizer = l1(0.1)))
model.summary()

A summary of the model is as follows:

Note that we performed  L1  regularization in the model-building process so that the model does not overfit on the training data (as the number of data points in the training data is small).

  1. Compile the model to minimize the mean absolute error value:
model.compile(loss='mean_absolute_error', optimizer='adam')
  1. Fit the model:
history = model.fit(train_data2, train_targets, validation_data=(test_data2, test_targets), epochs=100, batch_size=32, verbose=1)
  1. Calculate the mean absolute error on the test dataset:
np.mean(np.abs(model.predict(test_data2) - test_targets))*50

We should note that the mean absolute error is ~6.7 units.

In the next section, we will vary the loss function and add custom weights to see whether we can improve upon the mean absolute error values.

主站蜘蛛池模板: 兰州市| 扎鲁特旗| 阳山县| 白山市| 沙洋县| 庄浪县| 虹口区| 灵璧县| 福清市| 宜黄县| 沧州市| 彭阳县| 宽城| 从化市| 嫩江县| 延庆县| 永德县| 迭部县| 闵行区| 喀喇沁旗| 茂名市| 石泉县| 柳林县| 沾益县| 冀州市| 中阳县| 宜君县| 九龙城区| 宾阳县| 广德县| 定边县| 广饶县| 安平县| 惠安县| 北川| 大关县| 金湖县| 壤塘县| 四会市| 琼中| 鸡泽县|