Segmenting our input image
Now, we are going to introduce two techniques to segment our threshold image:
- Connected components
- Find contours
With these two techniques, we are allowed to extract each region of interest (ROI) of our image where our targets objects appear. In our case, these are the nut, screw, and ring.
推薦閱讀
- 大規(guī)模數(shù)據(jù)分析和建模:基于Spark與R
- Test-Driven Development with Mockito
- 卷積神經(jīng)網(wǎng)絡(luò)的Python實(shí)現(xiàn)
- 深入淺出MySQL:數(shù)據(jù)庫開發(fā)、優(yōu)化與管理維護(hù)(第2版)
- 大話Oracle Grid:云時代的RAC
- 數(shù)字媒體交互設(shè)計(jì)(初級):Web產(chǎn)品交互設(shè)計(jì)方法與案例
- MySQL DBA修煉之道
- Access 2010數(shù)據(jù)庫程序設(shè)計(jì)實(shí)踐教程
- Hands-On Deep Learning for Games
- 企業(yè)級大數(shù)據(jù)項(xiàng)目實(shí)戰(zhàn):用戶搜索行為分析系統(tǒng)從0到1
- 數(shù)據(jù)中臺實(shí)戰(zhàn):手把手教你搭建數(shù)據(jù)中臺
- 一類智能優(yōu)化算法的改進(jìn)及應(yīng)用研究
- AI Crash Course
- MySQL核心技術(shù)手冊
- Redis 6開發(fā)與實(shí)戰(zhàn)