- TensorFlow 2.0 Quick Start Guide
- Tony Holdroyd
- 65字
- 2021-06-24 16:02:03
Ranking (dimensions) of a tensor
The rank of a tensor is the number of dimensions it has, that is, the number of indices that are required to specify any particular element of that tensor.
The rank of a tensor can be ascertained with this, for example:
tf.rank(t2)
The output will be as follows:
<tf.Tensor: id=53, shape=(), dtype=int32, numpy=3>
(the shape is () because the output here is a scalar value)
推薦閱讀
- Mastering Matplotlib 2.x
- 精通MATLAB神經網絡
- 平面設計初步
- Getting Started with Clickteam Fusion
- 實時流計算系統設計與實現
- Zabbix Network Monitoring(Second Edition)
- 自主研拋機器人技術
- Visual Basic從初學到精通
- 大型數據庫管理系統技術、應用與實例分析:SQL Server 2005
- DevOps:Continuous Delivery,Integration,and Deployment with DevOps
- 大數據驅動的機械裝備智能運維理論及應用
- 軟件構件技術
- HBase Essentials
- 電腦故障排除與維護終極技巧金典
- Cortex-M3嵌入式處理器原理與應用