Summary
In this chapter, we learned what the Markov chain and Markov process are and how RL problems are represented using MDP. We have also looked at the Bellman equation, and we solved the Bellman equation to derive an optimal policy using DP. In the Chapter 4, Gaming with Monte Carlo Methods, we will look at the Monte Carlo tree search and how to build intelligent games using it.
推薦閱讀
- 計算機組成原理與接口技術:基于MIPS架構實驗教程(第2版)
- Developing Mobile Games with Moai SDK
- 商業分析思維與實踐:用數據分析解決商業問題
- 深入淺出數字孿生
- 數據驅動:從方法到實踐
- 大話Oracle Grid:云時代的RAC
- SAS金融數據挖掘與建模:系統方法與案例解析
- MySQL技術內幕:SQL編程
- 數據修復技術與典型實例實戰詳解(第2版)
- 成功之路:ORACLE 11g學習筆記
- Trino權威指南(原書第2版)
- MySQL核心技術手冊
- Unity 4.x Game AI Programming
- Applying Math with Python
- 元宇宙基石:Web3.0與分布式存儲