- Python Reinforcement Learning
- Sudharsan Ravichandiran Sean Saito Rajalingappaa Shanmugamani Yang Wenzhuo
- 158字
- 2021-06-24 15:17:29
TensorBoard
TensorBoard is TensorFlow's visualization tool that can be used to visualize the computational graph. It can also be used to plot various quantitative metrics and the results of several intermediate calculations. Using TensorBoard, we can easily visualize complex models, which will be useful for debugging and also sharing.
Now, let's build a basic computation graph and visualize that in TensorBoard.
First, let's import the library:
import tensorflow as tf
Next, we initialize the variables:
a = tf.constant(5)
b = tf.constant(4)
c = tf.multiply(a,b)
d = tf.constant(2)
e = tf.constant(3)
f = tf.multiply(d,e)
g = tf.add(c,f)
Now, we will create a TensorFlow session. We will write the results of our graph to a file called event using tf.summary.FileWriter():
with tf.Session() as sess:
writer = tf.summary.FileWriter("output", sess.graph)
print(sess.run(g))
writer.close()
In order to run the TensorBoard, go to your Terminal, locate the working directory, and type tensorboard --logdir=output --port=6003.
You can see the output as shown next:

- 數(shù)據(jù)要素安全流通
- Oracle RAC 11g實(shí)戰(zhàn)指南
- Access 2016數(shù)據(jù)庫技術(shù)及應(yīng)用
- OracleDBA實(shí)戰(zhàn)攻略:運(yùn)維管理、診斷優(yōu)化、高可用與最佳實(shí)踐
- 視覺大數(shù)據(jù)智能分析算法實(shí)戰(zhàn)
- 數(shù)據(jù)修復(fù)技術(shù)與典型實(shí)例實(shí)戰(zhàn)詳解(第2版)
- 聯(lián)動Oracle:設(shè)計(jì)思想、架構(gòu)實(shí)現(xiàn)與AWR報(bào)告
- Swift Functional Programming(Second Edition)
- 成功之路:ORACLE 11g學(xué)習(xí)筆記
- ORACLE 11g權(quán)威指南
- 大數(shù)據(jù)網(wǎng)絡(luò)傳播模型和算法
- 工業(yè)大數(shù)據(jù)工程:系統(tǒng)、方法與實(shí)踐
- 大數(shù)據(jù)原理與技術(shù)
- Access 2007數(shù)據(jù)庫應(yīng)用
- CORS Essentials