官术网_书友最值得收藏!

  • Python Reinforcement Learning
  • Sudharsan Ravichandiran Sean Saito Rajalingappaa Shanmugamani Yang Wenzhuo
  • 178字
  • 2021-06-24 15:17:29

Sessions

Computation graphs will only be defined; in order to execute the computation graph, we use TensorFlow sessions:

sess = tf.Session()

We can create the session for our computation graph using the tf.Session() method, which will allocate the memory for storing the current value of the variable. After creating the session, we can execute our graph with the sess.run() method.

In order to run anything in TensorFlow, we need to start the TensorFlow session for an instance; please refer to the code:

import tensorflow as tf
a = tf.multiply(2,3)
print(a)

It will print a TensorFlow object instead of 6. As already said, whenever we import TensorFlow a default computation graph will automatically be created and all nodes a that we created will get attached to the graph. In order to execute the graph, we need to initialize a TensorFlow session as follows:

#Import tensorflow 
import tensorflow as tf

#Initialize variables
a = tf.multiply(2,3)

#create tensorflow session for executing the session
with tf.Session() as sess:
#run the session
print(sess.run(a))

The preceding code will print 6.

主站蜘蛛池模板: 田阳县| 德钦县| 新郑市| 大洼县| 资溪县| 惠东县| 东兴市| 永康市| 克山县| 遂宁市| 黔江区| 柘荣县| 友谊县| 商南县| 巴彦县| 南华县| 将乐县| 略阳县| 西畴县| 阿克苏市| 思南县| 唐河县| 丰顺县| 伊宁县| 普兰县| 三江| 横山县| 秭归县| 东丽区| 保康县| 蓝田县| 万源市| 钟山县| 禄丰县| 峨眉山市| 工布江达县| 临泉县| 庐江县| 镇平县| 清远市| 铜川市|