官术网_书友最值得收藏!

R-squared

Another popular metric that's used in regression problems is the R-squared score, or the coefficient of determination. This score measures the proportion of the variance in the dependent variable that is predictable from the independent variables:

Here,  represents the vector of actual values, while  and  represent the vector of predicted values. The mean actual value is . The denominator of the quotient measures how actual values typically differ from the mean, while the numerator measures how the actual values differ from the predicted values. Note that differences are squared, similar to MSE, and so large differences are penalized heavily.

In a perfect regressor, the numerator is 0, so the best possible value for R2 is 1.0. However, we can see arbitrarily large negative values when the prediction errors are significant. 

All four types of evaluation metrics are implemented in machine learning packages and are demonstrated in the following code examples. 

主站蜘蛛池模板: 大港区| 江安县| 崇文区| 博乐市| 安乡县| 青阳县| 平安县| 凤阳县| 砚山县| 高清| 兰考县| 晋州市| 锡林浩特市| 札达县| 平和县| 呈贡县| 徐水县| 齐齐哈尔市| 阿克| 连山| 荃湾区| 长治县| 兴国县| 宁陵县| 揭东县| 德阳市| 通江县| 衢州市| 镇赉县| 手游| 绥阳县| 湘阴县| 濮阳县| 贵港市| 湘潭市| 峡江县| 时尚| 天峻县| 潞西市| 平塘县| 吉林省|