- Mastering Machine Learning on AWS
- Dr. Saket S.R. Mengle Maximo Gurmendez
- 138字
- 2021-06-24 14:23:17
Maximum likelihood estimation
Maximum likelihood estimation (MLE) is a popular model that's used for estimating the parameters of linear regression. MLE is a probabilistic model that can predict what values of the parameters have the maximum likelihood to recreate the observed dataset. This is represented by the following formula:
For linear regression, our assumption is that the dependent variable has a linear relationship with the model. MLE assumes that the dependent variable values have a normal distribution. The idea is to predict the parameters for each observed value of X so that it models the value of y. We also estimate the error for each observed value that models how different the linear predicted value of y is from the actual value.
- Arduino入門基礎教程
- ATmega16單片機項目驅動教程
- 龍芯應用開發標準教程
- INSTANT ForgedUI Starter
- 平衡掌控者:游戲數值經濟設計
- Artificial Intelligence Business:How you can profit from AI
- 計算機維修與維護技術速成
- Learning Stencyl 3.x Game Development Beginner's Guide
- 分布式微服務架構:原理與實戰
- Spring Cloud微服務架構實戰
- Creating Flat Design Websites
- Spring Cloud微服務和分布式系統實踐
- WebGL Hotshot
- FL Studio Cookbook
- 電腦橫機使用與維修