官术网_书友最值得收藏!

Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a popular model that's used for estimating the parameters of linear regression. MLE is a probabilistic model that can predict what values of the parameters have the maximum likelihood to recreate the observed dataset. This is represented by the following formula:

                           

For linear regression, our assumption is that the dependent variable has a linear relationship with the model. MLE assumes that the dependent variable values have a normal distribution. The idea is to predict the parameters for each observed value of X so that it models the value of y. We also estimate the error for each observed value that models how different the linear predicted value of y is from the actual value. 

主站蜘蛛池模板: 广饶县| 内丘县| 卢氏县| 常德市| 晋州市| 印江| 唐山市| 临猗县| 灵台县| 德阳市| 诏安县| 崇礼县| 宣城市| 桐城市| 盈江县| 同江市| 淄博市| 仁怀市| 图们市| 贡山| 七台河市| 洪雅县| 安多县| 安丘市| 舟曲县| 来安县| 甘南县| 宁夏| 达州市| 原阳县| 原平市| 登封市| 家居| 长顺县| 喀喇沁旗| 冷水江市| 九龙坡区| 忻州市| 乌海市| 齐河县| 井陉县|