- Deep Learning with R for Beginners
- Mark Hodnett Joshua F. Wiley Yuxi (Hayden) Liu Pablo Maldonado
- 124字
- 2021-06-24 14:30:44
Training Deep Prediction Models
The previous chapters covered a bit of the theory behind neural networks and used some neural network packages in R. Now it is time to dive in and look at training deep learning models. In this chapter, we will explore how to train and build feedforward neural networks, which are the most common type of deep learning model. We will use MXNet to build deep learning models to perform classification and regression using a retail dataset.
This chapter will cover the following topics:
- Getting started with deep feedforward neural networks
- Common activation functions – rectifiers, hyperbolic tangent, and maxout
- Introduction to the MXNet deep learning library
- Use case – Using MXNet for classification and regression
推薦閱讀
- 計算機組成原理與接口技術:基于MIPS架構實驗教程(第2版)
- 漫話大數據
- 達夢數據庫編程指南
- 大數據分析:數據倉庫項目實戰
- Filecoin原理與實現
- 企業大數據處理:Spark、Druid、Flume與Kafka應用實踐
- 區塊鏈應用開發指南:業務場景剖析與實戰
- 社交網站的數據挖掘與分析(原書第2版)
- Trino權威指南(原書第2版)
- 數據時代的品牌智造
- 敏捷數據分析工具箱:深入解析ADW+OAC
- Discovering Business Intelligence Using MicroStrategy 9
- 用戶畫像:平臺構建與業務實踐
- 拿下Offer:數據分析師求職面試指南
- 循序漸進Oracle:數據庫管理、優化與備份恢復