- Deep Learning with R for Beginners
- Mark Hodnett Joshua F. Wiley Yuxi (Hayden) Liu Pablo Maldonado
- 115字
- 2021-06-24 14:30:41
The initializer parameter
When we created the initial values for our weights and biases (that is, model parameters), we used random numbers, but limited them to the values of -0.005 to +0.005. If you go back and review some of the graphs of the cost functions, you see that it took 2,000 epochs before the cost function began to decline. This is because the initial values were not in the right range and it took 2,000 epochs to get to the correct magnitude. Fortunately, we do not have to worry about how to set these parameters in the mxnet library because this parameter controls how the weights and biases are initialized before training.
推薦閱讀
- 公有云容器化指南:騰訊云TKE實戰與應用
- 數據分析實戰:基于EXCEL和SPSS系列工具的實踐
- Python絕技:運用Python成為頂級數據工程師
- InfluxDB原理與實戰
- 分布式數據庫系統:大數據時代新型數據庫技術(第3版)
- 卷積神經網絡的Python實現
- Dependency Injection with AngularJS
- Hadoop 3.x大數據開發實戰
- 數據挖掘原理與SPSS Clementine應用寶典
- 數據中心數字孿生應用實踐
- IPython Interactive Computing and Visualization Cookbook(Second Edition)
- 跨領域信息交換方法與技術(第二版)
- 數據分析師養成寶典
- Oracle高性能SQL引擎剖析:SQL優化與調優機制詳解
- 數據中心經營之道