- Deep Learning with R for Beginners
- Mark Hodnett Joshua F. Wiley Yuxi (Hayden) Liu Pablo Maldonado
- 96字
- 2021-06-24 14:30:35
To get the most out of this book
You should be comfortable with R and RStudio and have some knowledge of college-level mathematics (calculus and linear algebra). Working knowledge of basic machine learning algorithms for classification, regression problems, and clustering might be helpful, but it is not strictly required
You would need access to a high-end machine or even a machine with a GPU. To get the most out of this book, I recommend that you execute all the code examples. Experiment with them, change the parameters, and try to beat the metrics in the book.
推薦閱讀
- 程序員修煉之道:從小工到專家
- R數據科學實戰:工具詳解與案例分析(鮮讀版)
- Neural Network Programming with TensorFlow
- Mockito Cookbook
- 數據挖掘原理與SPSS Clementine應用寶典
- 數字媒體交互設計(初級):Web產品交互設計方法與案例
- 大數據治理與安全:從理論到開源實踐
- Construct 2 Game Development by Example
- 數據庫查詢優化器的藝術:原理解析與SQL性能優化
- 數據分析思維:產品經理的成長筆記
- 標簽類目體系:面向業務的數據資產設計方法論
- ECharts數據可視化:入門、實戰與進階
- 深入理解Flink:實時大數據處理實踐
- R數據挖掘實戰
- Applying Math with Python