- Applied Supervised Learning with R
- Karthik Ramasubramanian Jojo Moolayil
- 107字
- 2021-06-11 13:22:26
Chapter 1:
R for Advanced Analytics
Learning Objectives
By the end of this chapter, you will be able to:
- Explain advanced R programming constructs
- Print the summary statistics of a real-world dataset
- Read data from CSV, text, and JSON files
- Write R markdown files for code reproducibility
- Explain R data structures such as data.frame, data.table, lists, arrays, and matrices
- Implement the cbind, rbind, merge, reshape, aggregate, and apply functions
- Use packages such as dplyr, plyr, caret, tm, and many more
- Create visualizations using ggplot
In this chapter, we will set the foundation for programming with R and understand the various syntax and data structures for advanced analytics.
推薦閱讀
- 24小時學(xué)會電腦組裝與維護
- 觸摸屏實用技術(shù)與工程應(yīng)用
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- micro:bit魔法修煉之Mpython初體驗
- Learning Stencyl 3.x Game Development Beginner's Guide
- 分布式微服務(wù)架構(gòu):原理與實戰(zhàn)
- Intel Edison智能硬件開發(fā)指南:基于Yocto Project
- Source SDK Game Development Essentials
- RISC-V處理器與片上系統(tǒng)設(shè)計:基于FPGA與云平臺的實驗教程
- 基于PROTEUS的電路設(shè)計、仿真與制板
- 電腦組裝與維護即時通
- 觸摸屏應(yīng)用技術(shù)從入門到精通
- USB應(yīng)用分析精粹:從設(shè)備硬件、固件到主機端程序設(shè)計
- 電腦主板維修技術(shù)
- 施耐德M241/251可編程序控制器應(yīng)用技術(shù)