官术网_书友最值得收藏!

How to do it...

In the following steps, we utilize scikit-learn's StandardScaler method to standardize our data:

  1. Start by importing the required libraries and gathering a dataset, X:
import pandas as pd

data = pd.read_csv("file_pe_headers.csv", sep=",")
X = data.drop(["Name", "Malware"], axis=1).to_numpy()

Dataset X looks as follows:

  1. Next, standardize X using a StandardScaler instance:
from sklearn.preprocessing import StandardScaler

X_standardized = StandardScaler().fit_transform(X)

The standardized dataset looks like the following:

主站蜘蛛池模板: 靖安县| 乌鲁木齐县| 吉安市| 白沙| 和林格尔县| 安庆市| 泰和县| 巢湖市| 武穴市| 从江县| 天镇县| 南木林县| 和政县| 贡嘎县| 阳春市| 海城市| 南和县| 饶河县| 山阳县| 枝江市| 婺源县| 白沙| 曲麻莱县| 瑞昌市| 扬州市| 芒康县| 太谷县| 长岛县| 修武县| 略阳县| 新闻| 全椒县| 缙云县| 新丰县| 海南省| 垫江县| 盐津县| 禹州市| 凌海市| 伊金霍洛旗| 湘阴县|